

1

AIMM NEWSLETTER ISSUE 2022/7

Newsletter
July 2022

System Simulations on AI for Network Operation &
Management

2

AIMM NEWSLETTER ISSUE 2022/7

Executive Summary

AIMM is a two-year CELTIC-NEXT European collaborative research and development
project targeting performance improvements and efficiency dividends for 5G and
beyond Radio Access Network (RAN), through advanced antenna array (Massive
MIMO) and Reconfigurable Intelligent Surface (RIS) technologies, powered through
and managed by the latest advancements in Artificial Intelligence (AI).

This newsletter provides an outline of the simulation principles and frameworks which
are being considered within the AIMM Work Package 5 on AI for Network Operation
and Management.

Introduction

The objectives of the AIMM project are to
enhance the performance of beyond 5G
Radio Access Network (RAN), via
developing novel algorithms based on
Artificial Intelligence (AI) and Machine
Learning (ML) techniques. The AIMM
project addresses two aspects of AI in the
RAN. The first, “bottom-up” approach, is to
use AI to optimise the air-interface
performance and enable the practical
implementation of antenna structures and
network architectures. The second, “top-
down” approach, is to incorporate big-data
management features coupled with AI

functionalities to facilitate RAN intelligence
and automation at the system level.

Work on the top-down approach has
leveraged on simulation techniques to
enable the life cycle of AI model
development. These are obviously the only
reasonable approach, given the
complexities of running experimental
algorithms on live networks at initial stages
of the development cycle. A decision was
made early in the project to develop code
for a completely new simulation platform.

System-level 5G network

simulation

Recent developments in the field of AI/ML
provide new capabilities of generating
automated solutions for network
management functions. Specifically,
Reinforcement Learning (RL) is an
approach for dynamically controlling and
solving Markov Decision Processes. An RL
intelligent agent learns to make sequential
decisions by interacting with the
environment. Other options include neural
network and deep learning methods. To
gather information and train any of these
intelligent agents, it is necessary to have
the existence of an accurate simulation
framework of radio network management
functionalities, activities, processes and
use cases.

AIMM Sim – general design
considerations

AIMM Sim is a system-level simulator
which emulates a full cellular radio system
following 5G concepts and channel
models. The intention is to have an easy-
to-use and fast system simulator written in
pure Python with minimal dependencies. It
is especially designed to be suitable for
interfacing to AI engines such as
‘TensorFlow’ or ‘pytorch’, and it is not a
principal aim for it to be extremely accurate
at the level of the radio channel. For the
latter task, pre-computed look-up tables
(based on simulated channel models) are
used to obtain fast run-times. If a more
precise link-level model is required, a
simulator such as ns-3 can be used.

3

AIMM NEWSLETTER ISSUE 2022/7

The code has a structure as shown in Figure 1.

Figure 1 AIMMSim Block Structure.

AIMM Sim – detailed design

The following factors have influenced the
overall software architecture:

1) The software architecture should
closely mimic the real system, with a
class for each type of network
component.

2) The components should exchange
traffic in a similar way to the real system.
However, “traffic” here is an abstraction;
there is no concept, for example, of IP
packets, or of resource blocks at the
physical layer. These constraints are
imposed to get sufficient speed from the
simulator, to get as many ML training
episodes in a given time as possible.

3) There should be a RAN Intelligent
Controller (RIC) module, at the top level
of management. The AI or ML methods
will operate solely in the RIC, effectively
as xApps and rApps.

4) The simulation technique should be
the discrete-event method. In the core of
the simulator, a queue of pending
events is maintained. Most events will
be periodic (such as UE reporting), and

an easy-to use framework is provided
for this. The discrete-event method has
negligible overheads and allows easy
mapping from simulated time to real
time.

5) Sub-banding (division of the channel
into sub-channels which may be
dynamically reallocated between cells)
is implemented on all Cell objects, but
the number of sub-bands may be set to
1, effectively switching off this feature.

6) All simulations take place in three
spatial dimensions, for example, to allow
modelling of high office buildings. Some
simple capabilities for accounting for
wall losses in indoor scenarios are
provided.

7) Dynamic features of a specific
simulation are handled by a Scenario
class. This can, for example, move
users according to some mobility model.

8) UE handovers between cells will be
handled internally by a heuristic based
on received signal reference power
(RSRP), as in a real system. This is

4

AIMM NEWSLETTER ISSUE 2022/7

implemented in the MME class. class.
However, for research into smart or AI-
based handover strategies, this default
heuristic can be overridden.

9) In fact, all modules can be overridden
or have their default behaviour modified
if desired, using the usual subclassing
technique.

Software design considerations

The following factors influenced the
software design:

1) The core simulator should be
monolithic (meaning that only one
import will be needed by applications),
but will not implement plotting or post-
simulation analysis. These can be done
better by existing tools.

2) The output of a simulation run will be
a logfile in a standard format (by default,
tab-separated columns). The lines in the
logfile are constructed and formatted by
an instance of the Logger class.

3) For testing and debugging purposes,
a real time plotter is provided as a
separate program. This reads and plots
the logfile as it is generated, through a
shell pipeline.

4) Python was chosen for portability,
ease of development, and ease of
interfacing to existing AI software.

5) Extensive use of Numerical Python
(numpy) means that most of the code is
running at the level of compiled C code.
Sufficient speed is thus attained.

6) External dependencies are kept to a
minimum; essentially the only one is
simpy to handle the event queue, but
little of its capabilities are in fact used,
and simpy could easily be replaced by a
small local module.

7) Sensible defaults are provided for all
system parameters, such as operating
frequency, channel bandwidth, etc.

8) Implementations are provided for
several 3GPP standard channel
models.

9) Extensive online documentation,
with a full set of tutorial examples, is
provided at
https://aimm.celticnext.eu/simulator/.

Outline of usage principles

The basic steps required to build and run a
simulation are:

1) Create a Sim instance, as it
represents the complete simulation.

2) Create one or more cells with
make_cell(). Cells are automatically
given a unique index, starting from 0.

3) Create one or more UEs with
make_UE(). UEs are automatically
given a unique index, starting from 0.

4) Attach UEs with the method
attach_to_best_cell().

5) Create a Scenario, which typically
moves the UEs according to some
mobility model, but in general can
include any events which affect the
network.

6) Create one or more instances of the
Logger class.

7) Optionally create a RIC, possibly
linking to an AI engine.

8) If necessary, create a custom Logger
class by subclassing.

9) Start the simulation with sim.run().

10) Plot or analyse the results in the
logfiles.

A complete simulation code demonstrating
these principles is in Figure 2.

An indoor use-case example

As a meaningful demonstration of the
AIMM simulator in application to an indoor
use-case, we consider the open-plan office
with partitions shown in Figure 3.

The aim in this example is to have ML
agent learn to control the transmit power of
two or more indoor small cells, in such a
way as to react to changes in UE location.
The hope is that by suitably setting the
powers, the impact of interference on

https://aimm.celticnext.eu/simulator/

5

AIMM NEWSLETTER ISSUE 2022/7

throughput will be minimized. A very
important question concerns the choice of
an objective function, or (in ML
applications), the reward function. We have
used a technique to compute the
distribution of throughput across all UEs,
and then use the performance of the lower
25% quantile users, as reference for
decision making.

The user mobility model was the one we
called “wave”. Here the users start with a
uniform distribution over the building, but
gradually all move to one end of the

building, and then back to uniform. This
cycle repeats indefinitely. The intention is
to provide the ML agent with experience on
extremes of user distributions, from
completely uniform to highly non-uniform.

The results shown in Figure 4 demonstrate
the transmit power (bottom red curve)
being dynamically controlled by the Q-
learning agent. The objective (light blue
curve in top graph) is being held at a
relatively constant level as the UEs move
between extremes of high and low density.

Figure 2 AIMM Sim complete code example.

6

AIMM NEWSLETTER ISSUE 2022/7

Conclusions & future work

The AIMM system-level simulator allows
easy construction of large-scale 5G
network simulations, with a clean interface
(through the RIC class) into standard AI
software packages. Because the RIC class
has privileged access to internal cell data,
as well as permission to change settings
operating parameters in cells, it is the right
place to run any AI or ML components.

Furthermore, current developments such
as implementing xApps and rApps with

communication via Google ‘protobuf’ can
be accommodated by putting a simple
translation layer in the RIC. Thus, the
current design is essentially agnostic
regarding messaging protocols.

Current enhancements being planned
include a tracking of energy consumption in
each network component, allowing use in
green radio projects. At the completion of
the AIMM project in September 2022, it is
intended to release the code as open
source.

Figure 3 Example open-plan office: six rooms with partitions.

Figure 4 Four-cell indoor scenario with 3GPP InH NLOS propagation model, results from Q-
learning.

7

AIMM NEWSLETTER ISSUE 2022/7

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiH5pn3xoviAhWp0eAKHQLsAlUQjRx6BAgBEAU&url=https://www.nokia.com/about-us/news/media-library/nokia-logo/&psig=AOvVaw2I-26QpZjnCoL6qmV3csvd&ust=1557391860718004
https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiu8PTiyoviAhX_A2MBHRLdAo4QjRx6BAgBEAU&url=https://www.jobs.ac.uk/job/BPJ264/dean-of-loughborough-university-london&psig=AOvVaw0d5PfTuxj9JY0DtdhUHUWU&ust=1557392853360552
http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjLzKu8yIviAhVHD2MBHZZ5DQEQjRx6BAgBEAU&url=http://decipher.uk.net/about-decipher/people/bristol-university-logo/&psig=AOvVaw0D-YNeHD3wBa8Ctc1rbp-T&ust=1557392274145340
https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj40o_cyYviAhXM8eAKHYnNCw4QjRx6BAgBEAU&url=https://www.linkedin.com/school/universit%C3%A4t-stuttgart/&psig=AOvVaw0jckdj0D1dp3IBS7t0VgKa&ust=1557392132630991
http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiS-qnEwfriAhUSWBoKHUVjCDQQjRx6BAgBEAU&url=http://www.clark.ie/&psig=AOvVaw2FvVGgV-tSDixb-Ugd1wqS&ust=1561204341943142

