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Abstract 

This report describes the progress of WP5 works in the AIMM project. The WP5 works are organised 
around three main activities: 

• specify entire network operation and management framework.  

• develop interactive and quarriable simulation environment for network functions testing  

• develop hierarchical and multiagent Reinforcement Learning strategies  

The work done have covered all these three tasks. Partners have worked in cooperation to develop 
Network Simulators to support the development of xApps/rApps, to implement a project dedicated 
Network Analytics Platform aimed at providing live network data and a testbed to the project partners, 
and finally on the development of xApps/rApps addressing the specified project use cases. 

The document focus is on the work done across the whole project with emphasis on presenting 
results from the technology developed in WP5. 
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Executive Summary 

Software-defined networking (SDN), network function virtualization (NFV), massively distributed 
computing, heterogeneous and cell-less system architectures are very likely to feature prominently 
in next-generation digital infrastructures. However, these networks of the future and their newly 
introduced features, significantly increase the complexity of a system. The network operation and 
management are becoming a very challenging task, having the traditional human-centric network 
infrastructure management model is no longer a viable option. It is a well appreciated strategy for 
newly introduced features, algorithms, policies, to be tested offline, before deployment on a target 
system. Different bottlenecks and drawbacks can be identified and hyperparameters tuned in a 
System Development Life Cycle (SDLC)-like model. Furthermore, the performance can be 
thoroughly evaluated before being deployed in a real system. A common practice is to do so by 
means of simulation tools. Recently a concept of “Digital Twin” has been proposed by various 
communities working on cyber physical systems. The AIMM project will develop the concept of 
“Digital Network Oracle” – which can be viewed as an augmented “Digital Twin” – the added 
capability refers to an architecture, which allows for “the twin” to be queried on instantaneous basis.  

Task 5.1 covers the network management and operation function and frameworks that currently 
depend heavily on traditional data to helps engineers and computational models to understand how 
the network behaves and determine the possible causes for such behaviour. Current network 
management frameworks and techniques are being researched and project is defining the best 
approach for AI based automation within the ORAN Alliance architecture, with particular focus: to 
identify the requirements for data sources and its structures; topologies and interfaces; processes, 
policies and KPIs; and address the use cases defined in WP2.  
 
Task 5.2 focus on the research and development of system level simulator frameworks that support 
the development and testing of AI algorithms. These simulators aim to mimic network functions, 
behaviours and network metric collection and reporting, thus offering the interfaces for the 
implementation of upper software layers that address the automation of network management 
procedures, policy enforcement, etc. 

Task 5.3 is dedicated to the research and development of new Reinforcement Learning techniques 
to be applied on the development of xApps and rApps focused on automating network operations 
and creating capabilities for the network be autonomic in managing/orchestrating its resources to 
optimise its performance.  

This document reports on the work developed on these three tasks across the entire project duration. 
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1 Introduction 

This report describes the research and development work, undertaken in WP5 throughout the 
AIMM’s duration, to specify and develop a Network Operation and Management Framework which 
is automated using AI. 

The approach taken in this workpackage is to work in three parallel workstreams: 

• Research existing Network Management Frameworks, identify the main requirements, 
features, and procedures, in order to specify the high-level characteristics of a framework 
which are suitable for the development of AI-based automation within the project. 

• Research system-level simulation frameworks and develop platforms to support the 
development and testing of AI/ML algorithms for O-RAN-compliant RIC xApps and rApps. 

• Research and develop the AI algorithms which implement O-RAN-compliant RIC xApps and 
rApps, aimed at resolving AIMM project use cases defined in WP2. 

The following sections of this document will provide detail of the work produced in the project. 
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2 High-level Network Operation 

5G is an umbrella concept under which multiple technologies and concepts come together in different 
domains, to implement a seamless integration of mobile and fixed network to allow the 
interconnection of people, things, and information flows. Network Function Virtualization (NFV) and 
Software Defined Networking (SDN) are two key enabler technologies of 5G, mainly underpinning 
the programmability of network functions aimed at the automation of provisioning, network 
management, operation, and maintenance tasks. The principles of programmability and automation 
are crucial for the implementation of the most important improvements promised by 5G, mainly at a 
network performance level such as increased spectrum efficiency or reduced latency. These 
principles were also very important for the AIMM project, being the foundations for our work on 
developing Artificial Intelligence (AI) algorithms and data platforms that enable the implementation 
of advanced Cognitive Network Management use cases. 

At an early stage the AIMM project team reviewed the existing technology trends, operational and 
delivery frameworks to deliver 5G and decided to adopt within the project scope of work the 
technology concept proposed by the O-RAN Alliance. This decision has a significant impact across 
all the work-packages and for the case of WP5 the impact was fundamental in shaping posterior 
work. 

2.1 Network Operation and Management Frameworks 

The early research work done by Vilicom was to identify the existing network operation and 
management frameworks, critically evaluate their characteristics against AIMM’s objectives and 
requirements and select one to use in the project. 

2.1.1 TMN FCAPS 

The objectives, requirements, and concepts of a Telecommunications Management Network (TMN) 
framework were introduced in 1988 (latest revision dates from 2000) by ITU-T in [2.1], which specifies 
the general architectural requirements for the management plane, of Public Telecommunications 
Operators (PTOs), responsible for the provisioning, installation, operation and administration 
activities of telecommunication networks and services. This document defines a functional 
architecture, information architecture, physical architecture, interfaces, and relationships between 
these architectures for the TMN management plane. 

Among the most important requirements of the TMN are the following: 

• The ability to securely collect and exchange management information between the network 

element (NE) layer, also referred to telecommunications functional layer, and the TMN layer 

thus enabling every function defined for network and service management.  

• The format of this management information should be convertible to achieve consistency 

across all TMN layers and functions.  

• Ability to analyse the data and consequently perform corrective and management actions. 

• All the functions, architectures and mechanisms must be technology agnostic and should 

evolve in time to adapt to future requirements. 

The TMN framework is organised into five Management Functional Areas (MFAs): 
• Fault Management 

• Configuration Management 

• Accounting Management 

• Performance Management 

• Security Management 

These MFAs are described in detail in ITU-T M.3400 [2.2]. 

2.1.1.1 Fault Management 

Fault Management is a set of functions which enables the detection, isolation, and correction of 
abnormal operation of the telecommunication network, the component NEs and its environment. 
These function-set-groups are listed in Figure 1Error! Reference source not found. and are defined 
to provide mechanisms and measurements for the execution of the maintenance phases defined in 
ITU-T M.20 [2.3]. These maintenance phases are the execution of Performance Measurements, 
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Failure Detection, System Restoration, Failure or performance information, Fault Localisation, 
Logistic Delay, Fault Correction, Verification and Restoration. 

Most of the originally proposed functions can be improved using AI and other automation 
mechanisms. New functions could be introduced using AI to mine and learn from the huge amounts 
of data produced by the network and its users. 

 

Figure 1 - Fault Management function set groups 

2.1.1.2 Configuration Management 

Configuration Management functions focus on the exercise of control over design and configuration 
aspects of the network, on the identification of NEs through logical topologies, on the collection of 
data from the NEs and on the provisioning of new/modified configurations. The function set group 
defined in this model is listed in Figure 2. 

 

Figure 2 - Configuration Management function set groups 

2.1.1.3 Accounting Management 

Accounting Management function set groups, described in Figure 3, enables the measurement of 
network services usage, the determination of costs to the service provider and charges to the 
customer for such use. It also supports the determination of prices for services. This information is 
heavily reliant on information collected from the many NEs and functions deployed across the 
network through the O&M functionality offered by Operational Support Systems (OSS) and Element 
Management Systems (EMS). 
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Figure 3 - Accounting Management function set groups 

2.1.1.4 Performance Management 

The function set groups defined for the Performance Management (PM) capability provides 
mechanism to collect/store Quality of Service (QoS) measurement data from telecommunication 
equipment, component deployed across the network, that is used to monitor, evaluate, report, and 
describe the network behaviour through the analysis of (key) performance statistical indicators. The 
purpose of these processes as defined in [2.3] is to maintain service levels by identifying and 
correcting faults/degradations in performance and for continuous performance improvement though 
the optimisation of configuration and NE design. Figure 4 lists the proposed functions by the PM set 
group. 

 

Figure 4 - Performance Management function set groups 

2.1.1.5 Security Management 

Security Management provides for the management of security across the network infrastructure 
which also includes mechanisms that focus on the security of all network management functional 
areas as specified in [2.1]. The functionalities implemented by network management plane 
information, procedures and tools are crucial for the assurance of QoS across the network and it is 
fundamental to protect its interfaces, information flows and rights of access from malicious or 
antagonistic users. The function set groups defined by Security Management are listed in Figure 5. 

Security of Management functionality includes Security services for communications and Security 
event detection and reporting. 

The Security services cover all the aspects related to authentication, access control, data 
confidentiality, data integrity, and non-repudiation that may be exercised during any communications 
between systems, between customers and systems, and between internal users and systems. 
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Security event detection and reporting implements the functions responsible for the surveillance of 
security breaching events and subsequent reporting to higher layers of security any activity that may 
be construed as a security violation (e.g. unauthorized user, physical tampering with equipment, 
tampering with on-line configuration of the network elements, etc.) 

 

Figure 5 - Security Management function set groups 

2.1.2 TMForum eTOM 

The Enhanced Telecom Operations Map (eTOM), also referred by Business Process Framework, 
has been specified and maintained by TeleManagement Forum (TMForum) as a framework to 
categorise all the business activities of a telecommunications service provider. 

The focus of eTOM framework is to enable end-to-end process automation of the business and 
operations processes that deliver information and communications services. It defines the business 
processes used by service providers, its interfaces, the links that connect these and the implemented 
use cases for the customer of each process. This framework also defines what services, resources 
and other types of information should be consumed by these business processes. It assumes, the 
automatic exploitation of the information generated across the organisation, to be a key factor for the 
future success of the telecommunication enterprise. 

The eTOM business process framework represents the whole of a service provider's enterprise 
environment. At a conceptual level it can be depicted as having three major process areas, as shown 
in Figure 6. 

• Strategy, infrastructure, and product – Covering planning and lifecycle management 

(associated with development and delivery). 

• Operations – Covering the core of operational management. 

• Enterprise management – Covering corporate or business support management. 
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Figure 6 - eTOM business process framework conceptual structure [2.4] 

The conceptual structure view provides an overall context that differentiates strategy and lifecycle 
processes from operations processes. It also identifies the key functional process structures in four 
horizontal layers across these two main process areas. Additionally, it depicts the internal and 
external entities that interact with the enterprise, such as customers, suppliers, partners, and overall 
stakeholders. 

The operations process area describes the processes and activities that are the traditional core 
competencies of the Service Provider (SP) enterprise, which includes network operations, network 
management and service operations which deals with customers’ support. As it can be seen from 
Figure 7Error! Reference source not found. the operations area also includes the processes of 
sales management and supplier/partner management. 
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Figure 7 - eTOM level 0 view of level 1 process groupings [2.4] 

On the other hand, the strategy, infrastructure, and product process area include processes focused 
on the definition and execution of strategies focused on the development of the network throughout 
its life cycle. Within the remit of this processes area is the planning and development of new 
technological features, product capability evolution and organisational competences crucial for the 
management of technology and product life cycle across networks, service, and products. 

In the eTOM framework, infrastructure refers to more than just the resource (IT and network) 
infrastructure that directly supports products and services. It also includes the operational and 
organizational infrastructure required to support marketing, sales, service, and supply chain 
processes, e.g., customer relationship management (CRM). These processes direct and enable 
processes within the operations process area. 

The enterprise management process area covers all the basic business processes that are required 
to manage any corporate business. These comprehend most of the complementary business 
competences and capabilities that support the core business functions on the implementation of 
business, technological and organisational strategies. 

Each process area is further organised in to supporting functional process structures reflecting the 
core business and organisational competences of the mobile network operator enterprise. These 
functional processes are: 

• Market, product and customer processes dealing with sales/channel and marketing 

management, product development and offer management, and finally operational 

processes that oversee network management, customer support, problem handling, SLA 

management, billing, etc. 

• Service processes deal with service development, service delivery and service management 

competencies and capabilities. 
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• Resource processes focuses on the development and delivery of network and IT 

infrastructure as a key resource for the delivery of products and services. It is involved in 

technology management including aspects of architectural, design and functional evolution 

and operational management aspects such as provisioning, incident management and 

performance management. 

Supplier and partner processes deal with the development and management of supply chains that 
underpins aspects related with infrastructure, product development and service delivery. 

 

2.1.3 ETSI NFV MANO 

The Network Functions Virtualisation Management and Orchestration (NFV-MANO) architectural 
framework was proposed by the European Telecommunications Standards Institute (ETSI) to 
manage the Network Functions Virtualisation Infrastructure (NFVI) and orchestrate the allocation of 
resources needed by the Network Services (NSs) and Virtualised Network Functions (VNFs). Figure 
8 presents the high-level framework’s architecture. 

 

Figure 8 - NFV-MANO architectural framework [2.5] 

NFV-MANO Functional Blocks 

VIM Virtualised Infrastructure Manager 
 
• responsible for controlling and managing the NFVI compute, storage and 

network resources, usually within one operator's Infrastructure Domain (e.g. 
all resources within an NFVI-Point-of-Presence (PoP), resources across 
multiple NFVI-POPs, or a subset of resources within an NFVI-PoP); 

• it may be specialized in handling a certain type of NFVI resource (e.g. 
compute-only, storage-only, networking-only), or may be capable of managing 
multiple types of NFVI resources (e.g. in NFVI-Nodes). 

NFVO Network Function Virtualisation Orchestrator 
 
• the orchestration of NFVI resources across multiple VIMs, fulfilling the 

Resource Orchestration functions; 
• the lifecycle management of Network Services, fulfilling the Network Service 

Orchestration functions. 

VNFM Virtualised Network Function Manager 
 
• responsible for the lifecycle management of VNF instances; 
• may be responsible from one or more VNF instances; 
• VNFM functions are generic common functions applicable to any kind of VNF; 



page 18 (123) AIMM Project, WP5, D5.2 

 © AIMM Consortium 

• NFV-MANO also supports the case where VNF instances require a specific 
set of functionalities for the management of its lifecycle, which must be 
specified in the VNF package. 

NFV-MANO Data Repositories 

NS-C Network Services Catalogue 
 
• represents the repository of all of the on-boarded Network Services, 

supporting the creation and management of the NS deployment templates 
(Network Service Descriptor (NSD), Virtual Link Descriptor (VLD), and VNF 
Forwarding Graph Descriptor (VNFFGD) via interface operations exposed by 
the NFVO. 

VNF-C Virtualised Network Function Catalogue 
 
• represents the repository of all the on-boarded VNF Packages, supporting the 

creation and management of the VNF Package (VNF Descriptor (VNFD), 
software images, manifest files, etc.) via interface operations exposed by the 
NFVO. 

NFV IR Network Function Virtualisation Instances Repository 
 
• holds information of all VNF instances and Network Service instances; 
• Each VNF instance is represented by a VNF record, and each NS instance is 

represented by an NS record; 
• Those records are updated during the lifecycle of the respective instances, 

reflecting changes resulting from execution of NS lifecycle management 
operations and/or VNF lifecycle management operations. 

NFVI RR Network Function Virtualisation Infrastructure Resources Repository 
 
• holds information about available/reserved/allocated NFVI resources as 

abstracted by the VIM across operator's Infrastructure Domains, thus 
supporting information useful for resources reservation, allocation and 
monitoring purposes. 

Other Functional Blocks that share reference points with NFV-MANO 

EM Element Management 
 
• responsible for FCAPS management functionality for a VNF. 

VNF Virtualised Network Function 
 
• responsible for the virtualisation of specific network functions. 

OSS/BSS Operational Support System and Business Support System 
 
• combination of the operator's other operations and business support functions 

that are not otherwise explicitly captured in the NFV-MANO framework. 

NFVI Network Function Virtualisation Infrastructure 
 
• encompasses all the hardware (e.g. compute, storage, and networking) and 

software (e.g. hypervisors) components that together provide the 
infrastructure resources where VNFs are deployed; 

• may also include partially virtualised NFs. 

 

Os-Ma-nfvo Reference point between OSS/BSS and NFV-MANO functional blocks. 

Ve-Vnfm-em Reference point between EM and VNFM 

Ve-Vnfm-vnf Reference point between VNF and VNFM 

Nf-Vi Reference point between NFVI and VIM 

Or-Vnfm Reference point between NFVO and VNFM 

Or-Vi Reference point between NFVO and VIM 

Vi-Vnfm Reference point between VIM and VNFM 

 

Network Functions Virtualisation (NFV) adds new capabilities to communications networks and 
requires a new set of management and orchestration functions to be added to the current model of 
operations, administration, maintenance, and provisioning. 
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In legacy networks, Network Function (NF) implementations are often tightly coupled with the 
infrastructure they run on. NFV decouples software implementations of Network Functions from the 
computation, storage, and networking resources they use. The virtualisation insulates the Network 
Functions from those resources through a virtualisation layer. 

From this decoupling emerge a new set of entities, the Virtualised Network Functions (VNFs), and a 
new set of relationships between them and the NFV Infrastructure (NFVI). VNFs can be chained with 
other VNFs and/or Physical Network Functions (PNFs) to implement a Network Service (NS). 

Since NS, PNFs, VNFs, NFVI and the relationships between them did not exist before the emergence 
of NFV, their handling requires a new and different set of management and orchestration functions 
that is introduced by the NFV-MANO framework. 

The NFVI resources considered, by this framework, are both virtualised and non-virtualised 
resources, supporting fully virtualised network functions and partially virtualised network functions. 

Virtualised resources in-scope are those associated with virtualisation containers, and are offered 
for consumption through appropriate abstract services, for example: 

• Compute nodes including machines (e.g. hosts or bare metal), and virtual machines, as 

resources that comprise both CPU and memory. 

• Storage, including volumes of storage at either block or file-system level. 

• Network, including networks, subnets, ports, addresses, links and forwarding rules, for the 

purpose of ensuring intra- and inter-VNF connectivity. 

The management and orchestration of virtualised resources should handle NFVI resources (e.g. in 
NFVI Nodes) in NFVI Points of Presence (NFVI-PoPs). Management of non-virtualised resources is 
restricted to provisioning connectivity to PNFs, necessary when a NS instance includes a PNF that 
needs to connect to a VNF, or when the NS instance is distributed across multiple NFVI-PoPs or N-
PoPs. 

The virtualised resources are managed to provide to VNFs, at each instant, with the resources they 
need. Allocation and release of resources is a dynamic process, in response to consumption of those 
services by multiple VNFs and should provision for specific and differentiated network requirements 
such as bandwidth and latency as an example. 

While the management and orchestrations function for virtualised infrastructure are VNF-unaware, 
resource allocations and releases may be needed throughout the VNF lifetime. An advantage of NFV 
is that with increasing load VNFs can dynamically consume services that allocate additional resource 
when scaling-out is triggered. 

Management and orchestration aspects of specific VNFs include traditional Fault Management, 
Configuration Management, Accounting Management, Performance Management, and Security 
Management (FCAPS) model. The decoupling of Network Functions from the physical infrastructure 
underpinning it, requires a new set of management functions focused on the creation and lifecycle 
management of the virtualised resources allocated for the VNF, processed that is referred to as VNF 
Management. 

VNF Management functions are responsible for the VNF's lifecycle management including 
operations such as: 

• Instantiate VNF (create a VNF using the VNF on-boarding artefacts). 

• Scale VNF (increase or reduce the capacity of the VNF). 

• Update and/or Upgrade VNF (support VNF software and/or configuration changes of various 

complexity). 

• Terminate VNF (release VNF-associated NFVI resources and return it to NFVI resource 

pool). 

During the VNF on-boarding process the VNF Management function reads from a deployment 
template the requirements necessary to realize such VNF and captures, in an abstracted manner, 
the requirements to manage its lifecycle. 

During the lifecycle of a VNF, the VNF Management functions may monitor KPIs of a VNF, if such 
KPIs were captured in the deployment template. The management functions may use this information 
for scaling operations. Scaling may include changing the configuration of the virtualised resources 
(scale up, e.g., add CPU, or scale down, e.g., remove CPU), adding new virtualised resources (scale 
out, e.g., add a new VM), shutting down and removing VM instances (scale in), or releasing some 
virtualised resources (scale down). 
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The VNF Management services each VNF, without interfering with the logical functions performed 
by the VNF, by exposing its functions in an open, well known abstracted manner other functions. 

The services provided by VNF Management can be consumed by authenticated and properly 
authorized NFV management and orchestration functions. 

2.1.4 ORAN RIC 

The O-RAN OAM Architecture, shown in Figure 9, identifies management services, managed 
functions and managed elements supported in O-RAN, including the interworking between service 
management and orchestration and other O-RAN components. The requirements, for this 
architecture, are derived from end-to-end OAM including the initial provisioning of O-RAN service 
across VNFs and PNFs, and data collection from O-RAN Managed Elements and O-Cloud. The 
architecture identifies the interfaces between O-RAN Service Management and Orchestration and 
Managed Elements for different models and example deployment options. 

 

Figure 9 - High-level ORAN Architecture [2.6] 

network management functionalities for the RAN and may also be extended to perform Core 
Management, Transport Management, and end-to-end Slice Management. This function is 
responsible to provide: the FCAPS interfaces and procedures to be used by the multiple O-RAN 
VNFs; the Non-RT RIC for RAN optimisation; and O-Cloud Management, Orchestration and 
Workflow Management. 
 

SMO interfaces 

A1 Interface between the Non-RT RIC in the SMO and the Near-RT RIC for 
RAN Optimization 

O1 Interface between the SMO and the O-RAN Network Functions for FCAPS 
support 

M-plane Open Fronthaul M-plane interface between SMO and O-RU for FCAPS 
support 

O2 Interface between the SMO and the O-Cloud to provide platform resources 
and workload management 

 
Service Management and Orchestration (SMO) 

SMO offers the FCAPS functionality through the O1 interface. The ORAN standards, adapted the 
original FCAPS function set and created a new list of processes to be executed by O1 interface: 

• Fault Management (FM) 

• Configuration Management (CM) 

• Performance Management (PM) 

• File Management 

• Communications Surveillance (Heartbeat) 

• Trace 

• Physical Network Function (PNF) Discovery 
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• PNF Software Management 

The Open Fronthaul M-plane interface also implements FCAPS procedures to the O-RU. The 
procedures include: 

• “Start-up” installation 

• SW Management 

• Fault Management (FM) 

• Configuration Management (CM) 

• Performance Management (PM) 

• File Management 

 

Figure 10 - Logical Architecture of ORAN [2.6] 

Non-RT RIC 

Another important functionality offered by the SMO is the Non-RT RIC that implements the A1 
interface towards the Near-RT RIC. 

Non-RT RIC is a functional platform designed to implement automated policy-based RAN 
optimisation activities, by running and managing Machine Learning (ML) models and data enrichment 
that facilitates analytics, decision making and learning by AI/ML algorithms. 

Near-RT RIC 

The O-RAN Near-RT RIC, as shown in Error! Reference source not found., is a logical function 
that enables near real-time control and optimization of E2 nodes functions: O-eNB; or O-CU and O-
DU. This interface implements controls loops for the gathering of data and the executions of 
optimisation actions via xApps. The frequency of execution of such control loops may vary in order 
of 10ms to 1s. All the actions taken by the Near-RT RIC are guided by the policies and enriched data 
coming from the Non-RT RIC. 

Network Functions 

ORAN architecture follows 3GPP architecture and interface specifications to the possible extent [2.6]. 
The main network functions implemented in ORAN are related with the 5G-NR gNB, and consist of 
one Open-RAN Centralised Unit (O-CU) that connects to and controls at least one Open-RAN 
Distributed Unit (O-DU) via the F1 interface. The O-DU connects to at least an Open RAN Radio Unit 
(O-RU), via an Open Fronthaul CUS-Plane, to implement the Uu interface. The Open Fronthaul M-
plane exist for the implementation of the Management Plane towards the O-RU via the O-DU. 
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O-CU 

The O-CU terminates both the User Plane (UP) and Control Plane (CP) of the NG interface towards 
5G Core Network. It also terminates the Xn interfaces between gNBs. O-RAN NR also supports 
multi-RAT Dual Connectivity and for this reason the O-CU also supports the S1 interface towards 
EPC and X2 towards eNBs. 

Depending on the implement bearer split option (Figure 11) the O-CU will terminate protocol layers. 

 
Figure 11 - 3GPP Function Split between central and distributed unit [2.7] 

O-CU-CP 

The O-CU-CP is the logical component of the O-CU that deals with all Control Plane related protocol 
stack, signalling messages and interfaces: 

• The O-CU-CP is connected to each O-DU through F1-C interface; 

• The O-CU-CP is connected to each O-CU-UP through E1 interface; 

• One O-DU is connected to only one O-CU-CP; 

• The O-CU-CP terminates the E2 interface to Near-RT RIC; 

• The O-CU-CP terminates O1 interface towards the SMO; 

• The O-CU-CP terminates NG-c interface to 5G Core (5GC); 

• The O-CU-CP terminates X2-c interface to eNB or to en-gNB in EUTRAN-NR Dual 

Connectivity (EN-DC); 

• The O-CU-CP terminates Xn-c to gNB or ng-eNB; 

This function is responsible for all the mobility related procedures. According to O-RAN specifications 
this function is responsible for the termination of the PDCP and RRC protocols of the CP to implement 
the Signalling Radio Bearers (SRBs) towards the User Equipment (UE). 

O-CU-UP 

The O-CU-UP is the logical component of the O-CU that deals with all User Plane related protocol 
stack, traffic and interfaces: 

• The O-CU-UP is connected to the O-DU through the F1-U interface; 

• The O-CU-UP is connected to each O-CU-CP through E1 interface; 

• One O-CU-UP is connected to only one O-CU-CP; 

• One O-CU-UP can be connected to multiple O-DUs under the control of the same O-CU-

CP; 

• The O-CU-UP terminates E2 interface to Near-RT RIC; 

• The O-CU-UP terminates O1 interface towards the SMO; 

• The O-CU-UP terminates NG-u interface to 5GC; 

• The O-CU-UP terminates X2-u interface to eNB or to en-gNB in EN-DC; 

• The O-CU-UP terminates Xn-u to gNB or ng-eNB. 

O-DU 

The O-DU terminates the F1 interface towards the O-CU, the Open Fronthaul CUS-plane, and M-
plane towards the O-RU, the E2 interface towards the Near-RT RIC and O1 interface to the SMO.  

One O-DU can support multiple O-RUs. 
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This function typically deals with the lower protocol layers of the stack and therefore is normally 
responsible for a great deal of RRM functions, RLC&MAC scheduling, and handling of the High-PHY 
functions of the fronthaul. 

O-RU 

The O-RU implements the Uu interface and terminates the Open Fronthaul Interfaces (CUS-plane 
and M-plane) and is a physical node. It also connects to the SMO via the O1 interface. 

O-Cloud 

O-Cloud is a cloud computing platform comprising a collection of physical infrastructure nodes that 
meet O-RAN requirements to host the relevant O-RAN functions (i.e., Near-RT RIC, O-CU-CP, O-
CU-UP, and O-DU), the supporting software components (such as Operating System, Virtual 
Machine Monitor, Container Runtime, etc.) and the appropriate management and orchestration 
functions. 

2.2 Network Topology 

Network Topology (NT) is defined in [2.8] as the “principle arrangement, ordering or relationships 
amongst objects and components used in describing a network, without regard to their actual 
occurrence in any real network”. A topological component as an architectural building block, is used 
to describe the network in terms of the topological relationships between network functions within 
the same network layer. These topological components may represent network entities, detailing 
network functions, protocol functions and entities and interface functions and entities. Figure 12 is 
an example of a topological representation of an ORAN-based architecture. 

NT representations play a central role in the implementation of any Network Management and 
Operation practice because it provides structure to processes like data collection, data visualisation, 
troubleshooting analysis. In the case of using of AI for the automation and enhancement of 
management and operational procedures, NT provide a reference for the correct definition of data 
structures, feature engineering, statistical analysis, rules, and policies. This set of reference elements 
are an essential part of AI algorithm development, testing, validation, and regular functionality in a 
production environment. 

 

Figure 12 - Example of a Network Topology representing the implementation of an ORAN based network. 

2.3 Data Sources 

As previously discussed, O-RAN architecture follows FCAPS framework for the implementation of 
O&M procedures across the different Network Functions (physical and virtualised). FCAPS has also 
been a common feature across the different network management frameworks that we have studied. 
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This makes us to assume that TMN FCAPS is the most suitable framework to be used in the future 
work within AIMM’s Work Package 5. 

Using the FCAPS framework, provides guidance on the expected information types and data sources 
for the execution of network management related procedures. Having a clear inventory of the 
possible data sources, data types and structures is an important step for structuring the development 
of xApps, rAPPs and other RIC related functionalities as it can be seen from Figure 13 where data 
plays a central and fundamental role on the RIC architecture. 

 

Figure 13 - Near-RT RIC Internal Architecture [2.6] 

2.4 Network Analytics Platform 

The consortium worked together to understand the challenges that present to the development cycle 
of Machine Learning (ML) and in specific Reinforcement Learning (RL) from O-RAN systems. From 
the view of algorithms development, firstly, in O-RAN, data related to model training is difficult to 
obtain and process. Standard interfaces defined in the O-RAN structure, such as E2, can access 
DU, CU and other components to collect information inside the network. This data comes, by default, 
in raw format and without a schema which is not suitable to be directly consumed by AI algorithms. 
To effectively implement AI on-top of O-RAN and its interfaces, the multiple raw data sources need, 
on a first stage, to be collected validated, enriched, transformed, and stored onto an integrated data 
pool, that prepares it to be processed by data engineering processes (such as application of business 
rules, creation of KPIs, feature engineering, linkage of data tables according to network topology 
mapping, etc.) that ultimately enables the application of the algorithms according to the addressed 
use cases. 

On the other hand, an O-RAN network is built on-top of other system components such as IP network 
and Cloud server infrastructure. The operation and maintenance of these system is crucial for the 
whole network performance and should be integrated in a holistic network management process that 
addresses all the components. 

2.4.1 Network Platform Components and Data Pipeline 

The project has benefited from the consumption of data from a real-life network based on O-RAN 
standards. The centralized units (CUs), distributed units (DUs), and remote radio units (RRUs) are 
the main NEs deployed as VNFs, and they produce FCAPS data that describe the network behaviour. 
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The FCAPS data is a fundamental building-block of the AI development cycle, being part of the 
training and validation process. Once deployed the AI will also use this data on its normal operation. 

This O-RAN network was used as a testbed offering real-live network traffic allowing to bridge the 
gap between purely computer simulated environments and a real live network, and despite being 
based on standardized interfaces, it presents the typical limitations of the real-world where features 
and capabilities are delivered as per a staggered development roadmap and market priorities of each 
network vendor. This helps the AIMM project partners to understand in more detail, the inherent 
challenges that will be presented when trying to deploy the AIs developed in a purely computer 
simulated environments to real-life networks through a xApp/rApp product solution.  

Given the standardisation of the RAN Intelligent Controller (RIC) functionality is still ongoing in the 
O-RAN Alliance, we have implemented an OSS/BSS and Analytics platform, depicted in Figure 14, 
for the collection, storage, processing, and analysis of the FCAPS data from all the VNFs and PNFs. 
This platform offers functionalities like the RIC such as: 

 

Figure 14 - Vilicom's Analytics Platform to implement Automated Network Management capabilities. 

2.4.1.1 Data Collection Agents (DCA) 

A DCA is a software application deployed across the network layer i.e. within, or alongside, network 
NEs and network element managers (NEM), that interact with existing APIs and the NEs. These 
agents use the standard APIs to collect the standard FCAP dataset. We have identified 
insufficiencies in these standard APIs and for that we have design these DCAs to be able to connect 
directly to the NEs and implement data collection processes that have been designed according to 
the use case.  

In an RAN network there are network domains that are implemented using equipment and technology 
that do not offer open and/or standard APIs. For that reason, it is necessary to develop specific DCA 
designed to interact with the specific NE API or protocol, etc. 

The DCA also has a function of data preparation right from the source, to allow for an efficient and 
effective data integration coming from multiple and diverse data sources, by normalising the data 
applying the conventions that have been defined in the system.  
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The DCA is also responsible for the logging of all its actions and to perform initial data validation 
procedures. This function is important to trace end-to-end the data pipeline and assist the upper layer 
of the data mediation stack. 

These applications are deployed directly on the management plane of the NE/EM or on any adjacent 
servers. These have been designed to listen and track the data generated on these sources and 
capable to pull the logs and send them instantly to the Data Acquisition and Mediation Layer (DAML). 

2.4.1.2 Data Acquisition & Mediation Layer (DAML) 

The data acquisition and mediation layer (DAML) is the main component in the Data Pipeline and it 

is responsible for collecting the data by coordinating the DCAs in the south-band interface, data 

processing and implementing the north-bound interface to the upper layers. This layer is a cluster-

based system designed according to Big Data requirements and best practices [2.9], allowing the 

system to scale and support ultra-dense networks.  

After data is collected from the DCAs, the DAML receive it in its raw format, requiring it to be prepared 
before going through validation and cleansing processes. The DAML needs to add the schema 
information to the data stream and link it with the network topology. This preparation processes 
increases the efficiency of the system by reducing the complexity of the data validation, data 
cleansing. 

The DAML is responsible for the data validation and data cleansing processes that consist in 
validating the data against the expected schema, identifying duplicate records, or missing records, 
and coping with latency on the data source in making the data records available. 

It also prepares the dataset for an optimal application of the data enrichment processes, that would 
fail if applied directly to the raw data due to missing network topology information details in the file or 
data structure.  

The data enrichment and data transformation functions are tightly coupled with the Data Storage and 
Processing layers because it prepares the data stream to match the schemas of the data lake and 
of other consuming applications. 

At the end of the DAML cycle, the data offered to the upper layers, is fully integrated, normalised, 
enriched and transformed according to the system conventions, thus simplifying development of the 
data lake and of any processing applications (including AI applications). The DAML layers can be 
continuously improved and extended to consume more – in quantity and diversity – data sources 
and to offer the data on the north-bound interface in any format, type and frequency that is optimal 
to the layers consuming the data stream, e.g. the support of multiple AI applications: that consume 
different metrics, focusing on different parts of the network (different NEs, protocols, etc.); and that 
might require data in real-time and as opposed to other AIs that consume non-real time data or even 
historical data. 

The DAML coordinates with the DCAs to securely collect the data by implementing encrypted data 
pipes. It creates one uniform data flow, between each DCA and the upper layers. 

2.4.1.3 Data Storage Layer (DStgL) 

This layer contains one of the main components of the entire architecture which is the data lake. The 

data lake is the place where the data is stored to be made available to the upper layers, most 

importantly the Processing and Application layers. It is designed upon a scalable private cloud object 

storage; it provides the means to manage and store big datasets that come in diverse formats and 

structures and enables high throughput and fast access to the data. 

The policies, business rules, network topology and other metadata required by the Policies, Control 

and Management Layer are stored in a dedicated relational database that is managed by the Data 

Storage Layer. 

Business Intelligence techniques and the development of ML/AI applications rely heavily upon wide 

and diverse historical datasets, for trend analysis, statistical analysis and for ML/AI in specific for 

model training, testing and validation. This demands for many computational resources and requires 

DSL to be designed and implemented using big-data best practices [2.10], to deliver optimal access 

to large scale datasets. 
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On the other hand, feature engineering and RL related tasks often require high-speed access to 

many disparate data sources to build and optimise the ML models, this requires high availability of 

some of data in great quantities and diversity. For this we have designed the data lake following the 

“Cold, Warm and Hot” approach [3] that is the optimal design meeting our needs.  

From the research and deployment stages, we have concluded that despite the structured nature of 

most of the data in our system, traditional database technologies and Hadoop Distributed File System 

(HDFS) technology are not suitable to be used in our platform.  

Traditional database technologies cannot cope with the required high Input-Output Operations Per 

Second (IOPS) across many datasets, making it very difficult to optimise the performance at the 

scale of the datasets being handled by the platform. It also limits the ability to perform complex 

querying across many and significant sized datasets and hence reducing the value of analytical 

processes consuming data from implementations using this technology. 

In the case HDFS, the limitations are associated with: 

• the cost of maintaining the original dataset and two more replicas, that demands extra 

storage resources, when compared to the implemented data lake technology design; 

• Its inability to handle online data streams, mostly when the number of simultaneous data 

streams is high; 

• its inefficient design in handling small files, that wastes resources when storing this data; 

• its requirements of high maintenance effort. 

The data lake is directly accessible by the other layers such as DM, Processing and AI Layer through 
a high throughput network. The design behind this storage system allows us to easily store petabytes 
of data and serve applications regardless of the data access requirements. 

2.4.1.4 Data Streaming Layer (DStreamL) 

The Data Streaming Layer (DStreamL) handles the continuous flow of information, inside each 
pipeline, managing multiple data sources in an integrated pipeline stream delivering these to real-
time processing applications and analytical visualisations. This type of real-time data source 
streaming provides a valuable benefit to the business, by guarantying that the data is made available 
to the PL in the right format and standard, and a continuous low latency and scalable pipeline 
bandwidth are achieved. 

There are many important applications that use streamed data, and they solve complex business 
problems. In this work we’ve implement an anomaly detection model that requires a continuous 
stream of data being fed with low latency. This anomaly detection model is an example of an 
application where the data is processed in real-time before even being stored in the data lake. These 
use cases are important when we consider the case of near-RT RIC and RT-RIC where the latency 
of the decision-making process must be kept in order of magnitude of milliseconds, and we cannot 
afford having the data stored before being processed. 

On the other hand, working with applications that have a continuous data processing requirements 
is not an easy task. There are many things to be considered when such applications are needed in 
business. Fault tolerance, complex data sources and complex network systems with extensive 
topologies [2.8] are some of the challenges that must be addressed in the design of the DStreamL. 

For this reason, we’ve designed the DStreamL to be distributed across a cluster of multiple nodes 
deployed in different geographies, where data is replicated so that the system becomes: 

• resilient to failures 

• scalable to increasing data streaming throughput and user demand on the PL. 

2.4.1.5 Processing Layer (PL) 

The Processing Layer (PL) is composed by multiple applications deployed over a containerised 
environment that scales-up with the increased demand from the services of the upper layers such 
as the Application and Visualisation Layers.  

The PL handles mainly three types of jobs, the distributed real-time computation, distributed batch 
processing and jobs related with AI models such as environment states, reward calculation, AI model 
training/testing, etc. 
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AI and ML applications are complex and hard to develop, maintain, optimise, and deploy because of 
its iterative and multi-staged life cycle. Complexity arises mostly from the stages that involve feature 
engineering, model training, model testing/validation and production deployment. On the other hand, 
the RL has more components to consider which are the environment, reward calculation, and the 
agents which make deploying these applications more challenging. 

As emerged in ML-Ops practices, the main enhancement to solve the challenges of AI lifecycle is to 
containerize all stages. The PL has been designed and implemented to follow this principle and 
overcome this challenge. 

The PL allows the deployment and execution of services that underpin AI applications throughout its 
entire life cycle. In addition, to this it also implements all the services that involve data processing 
such as KPI calculation, real-time processing, alarm processing, online monitoring notifications, rule 
enforcement and data preparation for visualisation. This layer works in tandem with the lower layers 
such as DStgL and DAML, to provide a containerised environment that simplifies the deployment 
and management of resource-intensive applications and guarantees high-throughput access to the 
data pool through dedicated and purpose-built data streams. 

This layer will help to encapsulate the works in subphases where the task could be updated 
separately without affecting other phases, we illustrate some of the main jobs in this layer as follow: 

 

• KPI (Key Performance Indicators) calculation: 

Network key performance indicators are calculated based on formulas defined within the 

3GPP (3rd Generation Partnership Project) standards. These specification documents (e.g., 

for 5G follow 3GPP TS 28.554) contain the KPIs description and formulas. These KPIs need 

an elevated level of domain expertise to develop and deploy across the data pool. The 

purpose of these KPIs, includes but is not limited to, the monitoring and troubleshooting of 

the network performance and long-term trend analysis of its performance. However, they are 

valuable features to build AI models and to reflect environment status. By abstracting this 

layer, we intend to save time and reduce complexity. The KPIs are calculated per raw, hour, 

day, week, month, and year. The results are eventually stored with the collected performance 

metrics for usage by the AI engineers. 

• Feature Engineering and Real-time data processing: 

 

The processing layer will also run applications that process streams and batches of data. 

This layer is where the feature engineering process is done. This abstraction considers the 

requirement of the RL-Ops. 

• RL/ML related components: 

The components needed to train, test and validate the AI application. These containers and 

the related applications are integrated in the whole platform so that they are able to 

cooperate with other containers and services offered in the processing layer. 

Additionally, the processing layer, can run environment simulators images and integrate them to the 
data pipeline. 

2.4.1.6 Policies and Control Layer (PCL) 

The Policies and Control Layer (PCL) is composed by a set of configuration methods, services and 
metadata that define and implement the business rules, object hierarchy and relationship across that 
are relevant for the functionality implemented across the Data Mediation, Data Storage and 
Processing Layers. 

The O-RAN FCAPS data, produced across the multiple VNFs and interfaces, is the most 
representative and important data type in this platform. This data being structured, it is not generated 
its raw format, with the whole information that is required its representation and to be integrated with 
other data sources. This layer contains the rules, metadata, and methodologies necessary for the 
efficient and effective implementation of the cycles the DAML, DStgL and DStreamL, allowing to 
create the structures to validate, cleanse, enrich and store the data in an optimal format. 

The network topology metadata and methods are fundamental for the linkage of the different 
managed objects and data structures, thus enabling the cross-layer analysis between network 



AIMM Project, WP5, D5.2 page 29 (123) 

© AIMM Consortium  

performance events and external events described by data sources - that are external to the O-RAN 
network – that are relevant for the analytical process, e.g., UE-based data that describes QoS and 
QoE events through detailed metrics and logs. 

On the other hand, this layer also stores the policies and rules that control some aspects of the 
system’s cognitive capabilities, such as identification of abnormal behaviour and the respecting self-
healing action/decision. These policies and rules can be defined by:  

• SMEs through processes of data engineering, feature engineering and/or analytical 
engineering; 

• and by automated analytic processes, possibly based in AI/ML applications that identify 
rules/decisions that after being validated and accepted by SMEs are later deployed on 
to production. 

2.4.1.7 AI Application Layer (AI) 

The AI layer is where the development, initial training and validation of the AI model happens. It 
allows to implement online training through real-time data consumption and offline model validation 
generating results/decisions that are not implemented rather validated by the developers and the 
subject matter-experts. It also allows to monitor logs and track performance of the AI jobs and related 
application images mostly for testing and debugging purposes. 

2.4.1.8 Data Visualization Layer 

This layer is mostly dedicated to implement Business Intelligence functions that allow for Subject 
Matter Experts to access the data, and produce graphical reports and dashboards, thus providing a 
visual interface to monitor the overall system performance. 

Through this layer it is possible to access reports and dashboards that inform about the performance 
of the different system components through the monitoring of dedicated measurements. The 
components that are monitored are: 

• O-RAN network equipment, VNFs, protocols, interfaces, and functions: this allows for the 
Network Management SMEs to evaluate network performance, identifying opportunities of 
optimisation, trends of systemic behaviour and evaluate the impact that AI algorithms might 
have on the overall system performance 

• Internet Protocol (IP) network equipment. 

• Operational Technology (OT) infrastructure that implements the private cloud that underpins 
the operations of Vilicom’s ORAN-based network. 

• AI application decision-making logging: this allows for the DevOps, MLOps and RLOps 
engineers to evaluate the performance of these applications during the entire life-cycle from 
training to operations. It also allows to visually report the results of correlation and causation 
analysis, emphasised on the evaluation of the applications decision on the system 
performance. 

2.4.2 Network Platform System Development and Versioning  

The platform design considers the RL-Ops approach [2.11] by encapsulating the main phases in AI 
life cycle to a micro service approach to continue the development and deployment of the platform. 

The use of a Continuous Integration and Continuous Delivery (CI/CD) pipeline [2.15] (Figure 15 and 
Figure 16) approach allows to abstract the development stages of each platform layer from the 
production environment, which contributes to continue deploying upgrades to the productions system 
without disrupting the system. It allows for the simplification and automation of the testing and 
deployment activities whilst offering strict control, which contributes to the fostering of collaborative 
work between multiple teams underpinning the simultaneous development & deployment of many AI 
applications. 
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Figure 15 - Architecture of implemented CD/CI Pipeline for Data Engineering 

 
Figure 16 - Architecture of implemented CD/CI Pipeline for AI models 

2.5 Vilicom’s Analytics Platform 

ORAN Alliance technological approach relies on a programable architecture [2.1] that has data as 
its core asset. The amount of generated/processed data and the wide range of functionality enabled 
by this architecture, increases substantially the complexity of the processes responsible for handling 
the entire development lifecycle, especially in complex network deployments with multiple vendors, 
multiple RATs, and multiple tenants. Vilicom platform, in Figure 14, has been designed and 
prototyped to deal with challenges in managing Big-Data life cycle, deploying analytical processes, 
deploying automations and ML/AI models that work coherently across multiple virtualised network 
instances overcoming the complexity of multiple network tenants, RATs, vendors, and domains. 
Vilicom Analytics platform deals with the challenges presented to the development cycle of Machine 
Learning (ML) and specific Reinforcement Learning (RL). The platform is designed to be compatible 
with Big Data requirements and easy to scale when the network scales up. 

2.6 Main Benefits of Vilicom’s Analytical Platform 

There are multiple benefits stemming from the development of this platform, from efficiencies in data 
integration, reducing cost through the automation of data processing and decision making and value 
created through the discovery of new knowledge that adds onto the existing business intelligence. 
 
There are benefits to all operational and management plane related processes through the 
integration of multiple data sources, that are generated by the network functions and interfaces of 
the multiple in-operation Public Land Mobile Network (PLMN) tenant instances, into the same data 
platform/stack with a common pipeline structure, whilst maintaining strict compliance to the network 
segmentation, security and data confidentiality principles, that are guaranteed by the interworking of 
the data storage layer (DStgL), data processing layer (DPL) and data policy & control layer (PCL). 
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The data integration capability implemented in the analytical platform allows for the industrialisation 
of the mediation process after the initial development of generic data collection and mediation 
software components. This capability reduces substantially the effort associated with the deployment 
of data mediation components specific to network instances from unsupported equipment vendors, 
since it requires simple configuration changes to adapt the generic functionality to support network 
functions and other software components from vendors and RATs that are not yet supported by the 
platform. 
 
The deployment of new PLMN instances using network functions, from supported vendors, is also 
streamlined and improved by this integrated approach since the generic mediation layer components 
are easily deployed and scaled-up, with minor configuration changes, across the cloud infrastructure 
using the principles of containerisation and resource orchestration. 
 
As depicted in Figure 17 the savings in terms of efforts associated with each stage of the data 
analytics pipeline, decrease from the more generic set of processes and activities to the more specific 
and use case driven activities, due to a lower effort in application/process implementation activities 
once the data has been structured and modelled properly from the initial design of each data source 
pipeline. 
 
Among the benefits introduced by this design is that this integration of the data, generated by the 
cloud wide network functions, into an application programming interface (API) offering multivendor 
and multi RAT: Performance Management (PM) Key Performance Indicators (KPIs); Fault 
Management (FM) alarms; and Configuration Management (CM) objects; to the development cycle 
of Machine Learning (ML) and Artificial Intelligence (AI) models, reduce the data collection 
bottleneck, accelerates the whole process of model training, model validation and model deployment 
to production [2.9]. The API allows the adaptation of the data structures and models consumed by 
the ML/AI development cycles according to the specific use case and problem statement for which 
each model is addressing. 

 
Figure 17.The main platform phases with respect to efforts 

• All in one platform 

o Unified platform for all data applications regardless of the data access type. This will 
support applications that need real-time access or big batch access to build stream 
applications, analytical logic, dashboards or even AI models. This feature is built to 
be compatible with Big Data Specification [2]. 

• Access to all data from one place 

o Since different network instances might be deployed based on different software 
vendors, which increases the complexity of the processes and activities related with 
the network management plane, the fully integrated nature of this platform’s design 
allows to enable ML/AI development for multi-vendor and multi-RAT (with all its 
specific) scenarios. This significantly reduces the effort of operating and maintaining 
the cloud infrastructure, by effectively underpinning the automation of processes and 
streaming of the data pipelines across the entire analytical life cycle. 
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• Centralized/Federated AI applications 

o As all the relevant data is hosted in this platform it becomes more affordable to 
develop and deploy AI applications. Collecting more variant data will help build more 
robust models. This design also supports working with multivendor Radio Intelligent 
Controller (RIC) environments and implements some functions of the Non-Real Time 
RIC. 

o It also supports the development of Federated Learning applications by hosting the 
global model in the processing layer. 

• Less work for new deployments 

o The generic nature of the data collection and mediation layer components, allows to 
repurpose existing interfaces by changing its configuration. Once it’s done, it is 
possible to consume data from new deployments using software components from 
vendors and RATs that are new to the platform without additional effort. 

2.7 AI deployment use cases 

In general, there are many possible ways to deploy AI in production environments, however, 
centralized and distributed Artificial Intelligence are yet considered the main enabler in 5G networks 
[2.12]. In this section, we introduce the two main methods to deploy AI in ORAN architecture using 
this platform. 

Case 1: AI Federated Learning  
Federated learning (FL) algorithm [2.13] is a communication and computation efficient framework for 
distributed learning approaches. FL algorithm exploits the possibility of keeping data local and 
collecting model updates/gradients from deployed AI workers to update a global/centralised version 
of each model. Therefore, there are several benefits of implementing FL in O-RAN architecture. 
 
Federated Learning in Vilicom platform 
Vilicom Cloud platform offers an example of using AI application in ORAN with multiple vendors and 
multiple deployments. It’s possible to face a case where we have some application interested in 
solving a specific network management problem like power optimization. On the other hand, it may 
not be feasible to develop “n” AI models for “n” networks/cases. This issue arises when there are big 
differences between the characteristic of each network. For example, a network deployed in industrial 
settings address substantially different requirements, through specific design and configurations, to 
those from networks deployed in a city centre or a sports arena/stadium. The FL framework can play 
a relevant role in solving such problem relying on local data. In each case, a model deployed in a 
RIC instance (possibly multiple RICs, from multiple vendors, across several deployments) and 
managed by Vilicom’s analytical platform, where a global model is deployed and maintained. This 
global model is, constantly updated by adjustments coming from the distributed/local deployed 
models, and it is used as a template for the deployment of new local instances to manage local 
network deployments. Figure 18 depicts a deployment scenario of FL in O-RAN using Vilicom’s 
Analytical Platform to manage its entire life cycle. 
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Figure 18. Federated learning in ORAN managed by Vilicom's platform. 

Case 2: Centralized AI learning 
Vilicom platform is also designed to support the development of centralized AI applications benefiting 
from a consistent and coherent data acquisition and mediation layer, across every data source. This 
simplifies the AI development lifecycle for non-real-time applications that require enormous amounts 
of historical data. Anomaly detection is an example for these types of AI applications. 
 
Figure 19 shows the cycle of building centralized AI applications in ORAN architecture using Vilicom 
Data platform. The model is executed inside the Vilicom Processing Layer that acts as a global non-
real-time RIC function. 
 
The innovation here is that model can be trained, tested, and validated in one place, Vilicom’s 
platform, and the final accepted model can be put into production within the same layer or in 
instances specific to each one of the deployed PLMNs. 

 

Figure 19. Centralized learning in ORAN managed by Vilicom's platform. 

2.8 Use case and Results 

The work on this task culminated in the development of a solution to a real operational challenge in 
a live ORAN network following the IBM data science life cycle methodology [2.14], as shown in Figure 
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20. The steps are categorized into three main phases that needs people from different skill set and 
knowledge. The main purpose of this proof of concept is to test the benefit of the platform in a 
practical exercise. 

 
Figure 20 - IBM Data Science Methodology - Main Phases [2.14]. 

The three main stages of this methodological process are: 

• Business related (Highlighted in green), 

• Data related phase (Highlighted in light blue) 

• AI related phase (Highlighted in yellow). 

 
Vilicom RAN Optimisation engineers, worked as Subject Matter Experts (SME), alongside Data 
Scientist, providing business knowledge that was fundamental in defining the problem statement and 
an analytical approach that could be consistent with the data sources available. 

At a second stage a data engineers together with Business SMEs determine what type of data is 
required to implement the analytical approach defined to address the problem statement. This is 
often done by identifying the FCAPS data sources that are available coming from the NEMs or 
directly from the NEs. In some cases, it is necessary to create agents to survey specific network 
behaviours that are not captured in the FCAPS information, mainly through the processing of UE 
logs and associated analytical procedures. 

In this project, the entire set of data engineering processes and activities have been implemented in 
Vilicom’s platform which is responsible for the data collection, preparation, and processing of all the 
data sources across all the data pipelines. Several data pipelines have been implemented to address 
different use cases or problem statements. An example of different pipelines being created to 
address a specific use case is the need to segregate, for security and confidentiality reasons, 
throughout the analytics platform the data that is generated by the set of CNFs – that implement NEs 
and NEMs – of each specific public MNO PLMN-ID that is a tenant on Vilicom’s Private Cloud. 

On the other hand, inside each PLMN domain, different network optimisation problem statements 
might require dedicated data pipelines to feed specific deployed AI-models or Visualisations. 

The analytical platform resolves the complexity of managing the development, deployment, and 
operation of all these different data pipelines through a process of CI/CD pipelining [2.15]. 

The third stage of the data science methodology proposed by IBM [2.14], has also been implemented 
through the architecture and toolset available in Vilicom’s Network Analytics Platform. AI engineers 
work alongside Data Engineers and business SMEs to define and implement the AI-models’ lifecycle. 

The people involved in this project, throughout the three stages, didn’t have shared skills and shared 
expertise, but the implementation, in the analytical platform, of the automations that implement the 
data pipeline facilitates the development lifecycle of data driven applications, by codifying and 
formalising all the methodology activities. 
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2.8.1 Business/Operational analysis stage 

The problem statement, addressed by the work of this project, describes the need to create a real-
time anomaly detection model that enables engineers monitoring the network performance to take 
decisions to resolve performance degradation events. The existing FCAPS data generated by the 
NEs and NEMs was not fit for the purpose of this analysis because of its reporting granularity – both 
for time and topology domain. The degradations were not noticeable in five-minutes aggregated data 
and neither at the cell level aggregation. For this reason, the SMEs and Data Engineers involved in 
this work identified that the best data source should be UE logs and API metrics. They defined that 
through the consumption of this data a set of trend and pattern analysis rules should be implemented 
to generate alarms to be displayed at the operational awareness dashboards. 

2.8.2 Data stage (feature engineering) 

Most of the effort to implement this process is spent at this stage (as depicted in Figure 17) to 
automate the data and feature engineering processes that prepares the data for suitable 
consumption by the data driven applications and visualisation layers. 

The analytics platform is designed to automate these procedures to underpin the work of AI-model 
development by reducing the complexity of integrating and deploying new micro data processing 
applications. 

Figure 21 depicts the functional architecture of the analytics platform detailing the technological 
components used in the data engineering stage. These architectural components implement the 
bottom five-layers of the analytics platform (Figure 14). 

 
Figure 21 – building data processing applications for data driven apps (including AI) 

The use of the analytics platform, and its CI/CD pipeline, in this stage allowed for the simplification 
of the whole process, by providing a framework and toolset (implementing the DCA, DAML, DStgL, 
DStreamL and PL layers), that: 

• simplifies and fastens the deployment of existing data collectors across pipeline domains 
and the development of collectors for any type of new data sources 

• integrates the data making it easier for data exploration and quicker understanding of the 
data structure and its content 

• and allows the flexibility/agility to build the data validation, data cleansing and data 
enrichment tasks preparing the data to be consumed by the upper layers 

• reduces the overall amount of effort involved in this stage of the data science methodology 
process 

• produces quality output that is ready to be used by the AI engineers throughout the lifecycle 
of the AI-model. 

In the context of our project, at this stage, the platform was collecting data in real-time from several 
UEs of the live network and preparing it to be processed using the previously defined analytic 
approach. 
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The output of this pipeline process, to the upper layers, are the following parameters: RSRP, RSRQ, 
DL throughput, UL throughput, timestamp, cell id, PCI, latency, longitude, latitude and of the UE 
distance from the site providing the service. 

2.8.3 AI Development and Deployment stage 

This stage encapsulates an iterative process that communicates with the data engineering stage and 
implements the AI-model necessary to achieve the desired outcome as defined in the 
business/operational analysis stage. 

Specifically for this project it was developed a system that is described in Figure 22, to implement a 
Long Short-Term Memory Neural Network (LSTM NN) model [2.16]. 

The raw data (RSRP, RSRQ, etc.) is first processed by a training features generation module. Then, 
considering that the data set is unbalanced, the model uses a weighted sampler, which means that 
the batch sampling process samples the data according to the proportion of each label. After the 
batch sampling, the data is fed to the sequential LSTM layer, followed by a full connected layer 
(FCN). The output of this FCN is the signal of alarm: ‘0’ means “No Action Needed”, while ‘1’ means 
“Action Needed”. 

 
Figure 22 - The system diagram of the proposed LSTM NN model. 

 
Figure 23 - The details of the raw pre-processing data module as part of the entire LSTM-model. 

Figure 23 details the data pre-processing module. As the kernel of the designed NN is the LSTM, 
the raw data must be processed as sequential data in the time-domain. This process consists of 4 
steps:  

(1) paddling and screening to fill up the missing records and remove the mistaken records. 
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(2) downsampling to calculate the mean value of the records of two different time-series, coming 

from two modems of the same device. 

(3) training sequence generation to wrap the raw data to a sequence, which can be fed directly 

into the LSTM; 

(4) label the sequence according to the historical records of actions taken by the engineers. 

Figure 24 shows the labelling process of the time series collected from the modems “cell 1” 

and “cell 2” will be labelled independently. 

 
Figure 24 - The labelling process 

The development, validation and deployment of the AI model was done in the platform, thus 
significantly improving the overall process by reducing the complexity for the AI engineer and 
reducing the development time, because it abstracts the data engineering activities into a separate 
readily available process. 

When the model passes the validation, the deployment is done instantly by leveraging the CI/CD 
pipeline as shown in Figure 16. 

The outcome of this stage is a validated LSTM model that was acceptable to be deployed in 
production automatically. 

2.8.4 The final product 

2.8.4.1 LSTM model 

The final product is a docker image containing the last updated LSTM model with two functions to 
consume data and write results. This image is a result of collaboration between the data engineering 
stage and AI-model development stage where the AI engineer train, test, validate and 
accepts/updates the AI model, whilst the Data Engineer (using DevOps practices [2.18]) 
adjusts/adapts the two functions - input source function and output sink function - as depicted in 
Figure 25. 

 
Figure 25 - Final AI artifactory (The Docker Image). Tasks for Data Engineer are in red, Task for AI Engineer are in blue. 

The input function collects the data in stream of raw periods of ten seconds and prepares it through 
statistical aggregation into data records of one minute granularity to feed the AI model. The AI model 
then predicts the action that will be handled by the output function where the data is stored as per 
the correct schema and in the correct lakehouse [2.19] table to be visualized instantly in the 
dashboard and thus feed the recommendation to the network operations engineer. 

2.8.4.2 Visualization Results and Anomalies’ Alarming 

The Visualisation dashboard, in Figure 26, takes a single-pane-of-glass [2.20] approach to network 
performance monitoring, combining a set of relevant network Key Performance Indicators (KPIs) to 
monitor the Quality of Service (QoS) offered by the network, UE Key Quality Indicators (KQI) to 
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monitor user experience and Radio Frequency (RF) metrics to monitor coverage levels and quality, 
to provide context when analysing the anomaly alarms predicted by the LSTM model. 

In this same dashboard we also publish the results of a heuristic application that has been developed 
to validate that the AI-model prediction results follow the engineering rules defined by the network 
operations SMEs. 

This approach will be followed for any other AI models that we develop and deploy in the future. 

 
Figure 26 – Single-pane-of-glass dashboard for AI alarms, PM and KPIs. 

Figure 27 shows the data visualisation for the UE location that is traveling in the vessel in the sea. 
The colour code follows a gradient between recent data records in bright red and older records in 
light blue. 

 
Figure 27 - UE movement in the coverage area. the UE symbol colour refers to collection time.  

Figure 28 is another example of a single-pane-of-glass dashboard that integrates geographical 
information system (GIS) data, with RF metrics, the UE logging data and the AI-model predicted data 
to allow the network operations engineer to understand the trends and validate the model results. 
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Figure 28 - Visualizing Alarms with PM, KPIs and data from the UE. The abnormal case was detected and highlighted in 
yellow. 

Any changes/updates committed to the data pipeline, KPIs, the AI-model or the dashboards will be 
automatically deployed via the CI/CD pipeline in seconds, following a GitOps approach [2.21]. 

These results validate the importance of the concept and architecture presented in Figure 14. 

2.9 Future Work 

Vilicom’s Analytics Platform is now part of our managed services business unit, and it is used to 
automate operational processes in our Service Operation Centre (SOC) and Network Operation 
Centre (NOC) and assist our engineers on their decision-making process. 

For the future we are looking to extend the number of operational use cases and processes to 
automate, through the development of more AI-models and Visualisation models. 

Further research and development efforts will be put into the automated provisioning in the network 
of the decisions taken by the AI-models, then closing the cycle of intent driven network optimisation 
applications and creating a network model that is more cognisant. 
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3 Interactive environment development 

3.1 5G-NR system-level simulator 

Recent developments in the field of Artificial intelligence (AI) provide new capabilities of generating 
automated solutions for network management functions. Specifically, Reinforcement Learning (RL) 
is an approach for dynamically controlling and solving Markov Decision Processes. An RL intelligent 
agent learns to make sequential decisions by interacting with the environment. Other options include 
neural network and deep learning methods. To gather information and train the intelligent agent, an 
accurate simulation framework for network management is necessary. 

The 5G-NR simulation and development environment, also known as “AIMMSim”, is a system-level 
simulator which emulates a full cellular radio system following 5G concepts and channel models. 
Further it is a discrete event simulation framework that maintains a queue of pending events internally 
which is invisible to the programmer. All functions and classes have default arguments appropriate 
to the simulation of a 5G macrocell deployment at 3.5GHz.  

The intention is to have an easy-to-use and fast system simulator written in pure Python with minimal 
dependencies. It is especially designed to be suitable for interfacing to AI engines such as 
‘TensorFlow’ or ‘PyTorch’, and it is not a principal aim for it to be extremely accurate at the level of 
the radio channel. For the latter task, pre-computed look-up tables (based on simulated channel 
models) are used to obtain fast run-times. If a more precise link-level model is required, a simulator 
such as ns-3 can be used. The AIMM simulator normally operates without a graphical user interface, 
and simply writes logfiles for subsequent analysis. The default logfile format is tab-separated 
columns, with purely numerical data. These files can then be easily processed with shell utilities such 
as cut, head, tail, etc., or read into Python or R scripts, or, if all else fails, even imported into 
spreadsheet programs. However, a custom logger can create a logfile in any desired format. 

The AIMM project addresses two aspects of AI in the RAN. The first, “bottom-up” approach, is to use 
AI to optimise the air-interface performance and enable the practical implementation of antenna 
structures and network architectures. The second, “top-down” approach, is to incorporate data 
collection features coupled with AI functionalities in order to facilitate RAN intelligence and 
automation at the system level. Work on the top-down approach has been largely based on 
simulation techniques. Typical requirements considered whilst developing AIMMSim framework are: 

1. The simulation framework needs to be interactive. The agent learns how to perform under 
different environment states. The large number of different instances should be imported by 
an RL intelligent agent to be trained. The simulation framework should also be able to receive 
and perform the policy generated by the RL agent. 

2. The framework needs to offer self-evaluation mechanisms for the states. In other words, the 
RL agent needs to receive feedback on how well is doing. This information needs to either 
come from the simulation framework itself, or from an individual evaluation module. 

3. A desirable feature is parallel sampling ability. To train an RL agent, the exploration of the 
environment is necessary. If parallel sampling is possible for the simulation framework, the 
training process of the RL agent would be more efficient.  

4. The simulation framework needs to rely on the O-RAN interface for interacting with the RL 
agent. This means any RL agent developed on the simulation will be one step closer to real-
world deployment. Furthermore, this clears the avenue for combining training data from both 
the simulation and the real-world as the agent can be trained on both interchangeably.   

5. The simulation framework needs to rely on the OpenAI Gym interface. OpenAI Gym is the 
de facto environment wrapper for RL research and development. It ensures proper 
interaction with the RL agent. Most RL algorithms are written with this interface in mind so 
ensuring it is implemented here will expedite the development cycle. 

3.1.1 Architecture 

The following factors have influenced the overall software architecture: 

1. The software architecture should closely mimic the real system, with a class for each type of 

network component. 

2. The components should exchange traffic in a similar way to the real system. 

However, “traffic” here is an abstraction; there is no concept, for example, of IP packets, or 

of resource blocks at the physical layer. These constraints are imposed to get 
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sufficient speed from the simulator, to get as many ML training episodes as possible, in each 

given time. 

3. There should be a RIC module (radio intelligent controller), at the top level of 

management. The AI or ML methods will operate solely in the RIC, effectively as xApps. 

4. The simulation technique should be the discrete-event method. In the core of the simulator, 

a queue of pending events in maintained. Most events will be periodic (such as UE 

reporting), and an easy-to-use framework is provided for this. The discrete-event method 

has negligible overheads and allows easy mapping to simulated time to real time. 

5. Subbanding (division of the channel into sub-channels which may be dynamically 

reallocated between cells) is implemented on all Cell objects, but the number of 

subbands may be set to 1, effectively switching off this feature. 

6. All simulations take place in three spatial dimensions, for example, to allow modelling of high 

office buildings. Some simple capabilities for accounting for wall losses in indoor scenarios 

are provided. 

7. Dynamic features of a specific simulation are handled by a Scenario class. This can, for 

example, move users according to some mobility model. 

8. UE handovers between cells will be handled internally by a heuristic based on 

RSRP (received signal reference power), as in real system. This is implemented in the MME 

class. However, for research into smart or AI-based handover strategies, this 

default heuristic can be overridden. 

9. In fact, all modules can be overridden or have their default behaviour modified if 

desired, using the usual subclassing technique. 

Software design considerations 

The following factors influenced the software design: 

1. The core simulator should be monolithic (meaning that only one import will be needed by 
applications) but will not implement plotting or post-simulation analysis. These can be done 
better by existing tools. 

2. The output of a simulation run will be a logfile in a standard format (by default, tab-separated 
columns). The lines in the logfile are constructed and formatted by an instance of the Logger 
class. 

3. For testing and debugging purposes, a realtime plotter is provided as a separate 
program. This reads and plots the logfile as it is generated, through a shell pipeline. 

4. Python was chosen for portability, ease of development, and ease of interfacing to 
existing AI software. 

5. Extensive use of Numerical Python (numpy) means that most of the code is running at the 
level of compiled C code. Sufficient speed is thus attained. 

6. External dependencies are kept to a minimum; essentially the only one is simpy to handle 
the event queue, but little of its capabilities are in fact used, and simpy could easily be 
replaced by a small local module. 

7. Sensible defaults are provided for all system parameters, such as operating 
frequency, channel bandwidth, etc. 

8. Implementations are provided for several 3GPP standard channel models. 

9. Extensive online documentation, with a full set of tutorial examples, is provided 
at https://aimm.celticnext.eu/simulator/. 

 

https://aimm.celticnext.eu/simulator/
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Figure 29 - AIMMSim Block Structure 

Outline of usage principles 

The basic steps required to build and run a simulation are: 

1. Create a Sim instance. The represents the complete simulation. 

2. Create one or more cells with make_cell(). Cells are automatically given a unique 

index, starting from 0. 

3. Create one or more UEs with make_UE(). UEs are automatically given a unique 

index, starting from 0. 

4. Attach UEs with the method attach_to_best_cell(). 

5. Create a Scenario, which typically moves the UEs according to some mobility model, but in 

general can include any events which affect the network. 

6. Create one or more instances of the Logger class. 

7. Optionally create a RIC, possibly linking to an AI engine. 

8. If necessary, create a custom Logger class by subclassing. 

9. Start the simulation with sim.run(). 

10. Plot or analyse the results in the logfiles. 

A complete simulation code demonstrating these principles is in Figure 30. 
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Figure 30 - AIMM Sim complete code example. 

3.1.2 System Evaluation and Benefits 

The AIMM system-level simulator allows easy construction of large-scale 5G network simulations, 
with a clean interface (through the RIC class) into standard AI software packages. Because the RIC 
class has privileged access to internal cell data, as well as permission to set operating parameters 
in cells, it is the right place to place any AI or ML components. Furthermore, current developments 
such as implementing xApps with communication via Google protobuf can be accommodated by 
putting a simple translation layer in the RIC. Thus, the current design is essentially agnostic regarding 
messaging protocols. Current enhancements being planned include a tracking of energy 
consumption in each network component, allowing use in green radio projects. At the completion of 
the AIMM project in September 2022, it is intended to release the code as open source. 
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3.2 AIMMSim as Digital Twin 

Assessing customer experience and network quality of service is of utmost importance for global 
mobile operators as it provides the ability to optimise network performance based on current needs 
and demand. A comprehensive investigation of the potential of DT, in particular, a one-way DT for 
5G Radio Access Network (RAN) and beyond employing network data for a range of use cases has 
been performed. The developed one-way DT also referred as “AIMMSim” has been utilised to study 
performance issues, generate valuable insights, and produce data-driven policies in dynamic as well 
as static environments. These informed policies generated are envisioned to assist human-in-the-
loop such as network planners and/or radio engineers to resolve edge cases, false positives taking 
better network decisions in the real world. These simulations provide more control on validating 
machine learning models’ predictions to avoid bad AI decision-making as it could be costly for the 
business.  

  

The ML technique implemented is reinforcement learning (RL), a branch of AI and class of ML that 
employs a reward and punishment policy to enable an agent to learn a solution to a decision problem 
by interacting with its environment purely through trial-and-error. The motivation to develop RL 
enabled algorithms is the ability to learn a solution without any prior knowledge of the environment 
or the reward function. For instance, if new base station(s) are to be deployed in a particular area 
where no historic data is available that might lead the RAN planners to optimal location for BS 
deployment, a RL algorithm by continuous interaction with the environment may learn an optimal 
policy and assist in taking effective decision. A few of the use cases explored are (a) radio coverage 
prediction (b) smart interference management (c) mobility management and (d) power optimisation.  

 

The findings from utilising DT for RAN are progressive and could significantly assist in the 
development of more robust and reliable solutions with less operational and maintenance costs. We 
now focus to develop UE traffic patterns using real network data in urban, sub-urban and rural 
environment using the real data measurements from the network. The intent is to then input these 
developed UE traffic patterns into the developed twin and analyse the network performance. The 
motivation to do this activity is (a) to map simulation environment as close as possible to the real 
world (b) minimise the assumptions that are considered when utilising the mathematical mobility 
patterns which are considered to either simplify the complexity or reduce simulation time. 

 

3.3 Variational Autoencoder Assisted Neural Network 

Likelihood RSRP Prediction Model 

3.3.1 Introduction 

The advent of the fifth-generation (5G) network provides a unique potential for UEs through three 

application themes namely enhanced mobile broadband (eMBB), ultra-reliable low-latency 

communications (URLLC) and massive machine type communications (mMTC). These network 

advancements bring challenges to the complex heterogeneous radio access networks (RAN) and 

ultra-dense networks (UDN) such as BS deployment, radio coverage and capacity planning. Mobile 

network providers rely on a series of key performance indicators (KPIs) to understand, analyse, and 

assess network performance for coverage and capacity. One of the KPIs for coverage analysis is 

signal strength - reference signal received power (RSRP). To measure RSRP values as well as other 

network metrics drive tests are usually performed. It requires significant human efforts, explicit 

hardware and substantial capital expenditure (CAPEX). Moreover, the measurements recorded via 

this method are limited. It only reflects network performance for a short period for a particular location 

that lacks comprehensive spatial-temporal data collection and assessment. To overcome the 

challenges for RSRP measurement using the drive test, the 3rd Generation Partnership Project 

(3GPP) in Release 9 introduced the Minimisation of Drive test (MDT) methodology. Here, radio 

measurements are collected using an individual’s mobile device that is logged into the network. Each 

UE feedback its network experience to the associated BS. 
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Generally, there are two approaches for predicting RSRP. The first is via the 3GPP standard-based 

empirical model. Based on field measurements from different terrain and scenarios, such as urban, 

rural, suburban, macro or microcells, it summarizes the propagation rules based on a large number 

of test values. Typical empirical-based path loss models as documented in 3GPP TR 38.901 [3.1]. 

Such modelling depicts the channel properties in a general and coarse way, which may not be 

accurate enough for specific environments. The second method is the data-driven approach. Instead 

of modelling the propagation model, the correlation between environmental features in an area and 

the corresponding RSRP values are directly estimated. This approach needs a large amount of 

historical RSRP data that could be obtained through MDT. However, data collected by MDT has the 

following issues (a) the signal strength between UE devices at the same location and time could 

differ more than ±6dB [3.2]. (b) Inaccurate location information for indoor UEs. (c) Some locations 

only contain limited data points due to imbalanced UE distribution. Estimating and predicting RSRP 

values from limited and inaccurate measurements leads to ineffective Quality of Service (QoS) 

analysis. Recently, efforts towards employing Artificial intelligence (AI) or machine learning (ML) 

techniques in RAN are progressing swiftly. One example is the introduction of the Radio Intelligence 

controller (RIC) module in the radio network architecture of Open RAN (O-RAN) [3.3]. ML-enabled 

algorithms provide feasible and accurate solutions to use cases such as intelligent coverage 

analysis, smart handover, load balancing, etc. In this work, we propose to use an ML model for RSRP 

prediction, which assists in assessing network coverage in the focused area. 

This simulation work presents a generative model for accurate RSRP prediction based on a well-

designed neural network (NN) architecture. We not only utilise the historical real data of RSRP but 

also consider the geographical statistics information. The correlation between geographical 

information and RSRP distributions is then mapped through data compression. Regarding the 

extraction of environmental features, we construct images that can reflect the transmission 

environment from BS to UEs, using them as auxiliary training features of the RSRP prediction model. 

The BS-UE association modelling is accomplished by a modified digital twin (DT), while the process 

of feature extraction is completed by a variational autoencoder (VAE), with a convolutional neural 

network (CNN) as a backbone. Once the model is trained, the encoder of VAE serves as the 

environment feature extractor in this work. The low-dimensional latent variables will be used as the 

environmental features to assist the RSRP prediction. In regard to the RSRP prediction model, a 

multi-layer perception (MLP) trained in a supervised learning manner is applied. Due to changes in 

the transmission environment, the RSRP value recorded at each location is time-varying. 

From a statistical point of view, the RSRP values recorded at this location conform to a normal 

distribution. To estimate the normal distribution, the MLP model is designed as a likelihood model. It 

takes the output of the aforementioned encoder and BS-recorded features as inputs and outputs the 

mean and variance. The main contributions of this simulation work are summarised below: 

• We propose a likelihood NN model for the RSRP prediction considering the distribution of 

real RSRP values. 

• We propose to use a VAE to learn the environmental auxiliary features from the 

geographical map generated by a DT. This VAE can be trained offline separately, which 

does not affect the training efficiency of the likelihood model. The features are used to assist 

the training of the NN model. 

• To the best of our knowledge, for the first time, a joint training prototype employing a two-

tier neural network for radio coverage prediction is put forward, which benefit from both a 

digitized simulation model and real data. 

• We validated the proposed model using real network data which illustrates superiority over 

the empirical model. 
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3.3.2 Background 

3.3.2.1 Empirical-based model 

Empirical-based models are a set of models summarised from a large amount of measured data in 
different scenarios. The Log Distance Path Loss (LDPL) propagation model is the most 
representative one which has been adopted widely [3.4]. LDPL treats the power at location 𝑙 𝑗 as a 
log-normal random variable, depicts the relationship between the received power and BS to UE 
distance ∥ 𝑙𝐵𝑆 − 𝑙 𝑗 ∥2, which can be represented by: 

 
(1) 

where 𝑑0 is the close-in reference distance, which is determined from measurements close to the 

transmitter, 𝑛𝑗 and 𝑤𝑗 are adjustable coefficients determined by the propagation environment [3.5]. 

After delicate tuning and testing of these parameters, there are several standardised empirical 

models for propagation modelling that are largely used by academics as well as in industry such as 

the COST 231 Hata model [3.6], Okumura model [3.7], Walfisch-Ikegami model [3.8], WINNER II 

Propagation model, etc. However, in the presented work, classical ML techniques and a linear 

regression model have been employed on the real network data for network radio propagation 

assessment. 

3.3.2.2 Data-driven approach 

The data-driven approach aims to use the historical data of RSRP to analyse the relationship 
between RSRP and environmental changes over time and space, to achieve fine grained, site-
specific modelling. The intensive development of ML provides a powerful engine for this type of 
approach. For example, a random forest (RFs) based predictor considering a rich set of features that 
includes location, time, cell ID, device hardware and other features has been proposed in [3.4]. The 
paper demonstrates the benefits of using fewer measurements and achieving higher accuracy in 
real-world data sets. Ref [3.9] utilises a Regional Analysis to Infer KPI (RAIK) framework to establish 
a relationship between geographical data and user data using crowdsourced measurements. A radio 
wave propagation prediction based on backpropagation (BP) NN and a simplified path loss model is 
proposed in [3.10]. Ref [3.11] proposed a two-step algorithm for RSRP map generation by regression 
clustering.  

However, the challenge for the data-driven RSRP prediction is that there are only a limited number 
of training features available. In the current work latitude, longitude, altitude, transmission frequency, 
timestamp, and cell ID are a few of the parameters that were used. The available MDT data does 
not fully reflect the channel variation. In the NNbased approaches, this limitation will usually result in 
the underfitting of a NN model. Hence, how to generate more auxiliary features to assist the training 
process of the NN model and improve the model performance is a significant challenge. Except for 
the radio features recorded by the BS, some researchers propose extraction and utilisation of 
environmental features. It is known that geographical statistics influence the signal quality, so the 
characteristics of the transmission environment, such as the UE distribution and maps, the 
obstructions in the transmission path, the height of buildings, etc., are integrated with the BS-
recorded features. 

The representative of this method is ray-tracing, which is a popular approximation using geometrical 
optics and knife-edge diffraction theory [3.12]. An ML-based 3D propagation ray-tracing model for 
the cellular network is studied by [3.13]. Thrane et al. proposed a channel model using deep learning 
(DL) and a simple path loss model aided satellite image, in which the path loss modelling was also 
finished by a raytracing model [3.14]. Zhang et al. introduced a CNN-based NN to reduce the 
computational complexity in the ray-tracing model [3.12]. Despite these papers claiming the 
advantages of less ray-tracing time and the potential in improving path loss prediction, it is far from 
a complete solution because the proposed NN ray-tracing models are trained in a supervised way, 
which inevitably need to execute ray-tracing module and collect dataset in advance. 

3.3.2.3 Digital Twin 

“A digital twin is a digital representation of a physical item or assembly using integrated simulations 
and service data” as defined in [3.15]. A DT provides high-fidelity representations of all components 
of the current live mobile network, including service and UE behavioural characteristics [3.3]. With 



page 48 (123) AIMM Project, WP5, D5.2 

 © AIMM Consortium 

the maturity of image processing technology based on NNs, pure image-based environmental feature 
extraction schemes are gaining attention. In [3.16], the geographical features are processed by the 
open street map (OSM) and expert knowledge is used jointly to learn a prediction model. Yi et al. put 
forward an environmental feature exploring method by using CNN on the maps of altitude, maps of 
building height and maps of CI [3.17]. But there are some issues with these methods. For example, 
the latent features extracted by CNN are sparse, which makes it difficult to identify its effects in 
training; the CNN-RSRP training is done end-to-end, which makes the model hard to apply to other 
scenarios. In this study, we utilise a DT, named DRIVE, that was designed by Ioannis et. al. [3.18] to 
digitalise the BS to UE transmission links in the given scenario. DRIVE is a flexible, modular, and 
city-scale framework aimed at the vehicular and network simulator. It contains three major 
functionalities: 

• It is designed to parse and simplify the OSM and different types of buildings. 

• The SUMO module is integrated to generate the UE mobility traces according to the road 

situation from OSM. 

• It can perform the continuous network simulation according to the UE locations and BS 

settings. 

Although the empirical propagation model is adopted in DRIVE, we utilise its OSM processing and 

the specific UE generation ability that are valuable in modelling the BS to UE relationship 

geographically. 

It is known that the key factors affecting signal transmission exist in the characteristics of the 
environment, such as how far the signal transmits, and how many reflections, absorption, and 
scatterings it encountered during this period, even the building materials and vegetation. But these 
characteristics are difficult to model accurately. Although ray-tracing methods are aiming to restore 
the transmission path as much as possible, urban-scale raytracing is too time-consuming and 
complicated to be realistic. Moreover, as discussed in [3.14], simpler images would improve not only 
the training of the model and the hyperparameter search but also the final performance of the 
methodology. Therefore, in this study, we do not seek accurate tracing results. We focus on how to 
describe the possible impact of the signal transmission path with UE location and environmental 
information. 

3.3.3 The Proposed Two-Tier NN Architecture 

We elaborate on the proposed two-tier NN model with emphasis on NN architecture, training data 
generation and training scheme. As shown in Figure 31, the proposed NN model consists of two 
cascaded NNs. The first tier is designed as a CNN-based VAE to extract relevant environmental 
features while the second-tier network is designed as a fully connected network with two heads that 
outputs the mean and variance of RSRP in each location. The underlying representation of VAE is Z 
- this parameter will assist the training of the two-tier neural network. 
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Figure 31 - The proposed two-tier neural network architecture 

3.3.3.1 First tier - Variational Autoencoder 

1) Data sampling: As shown in Figure 31, the OSM corresponding to the site is imported into the 
DRIVE simulator. Further, the functions provided by the simulator are utilised to simplify the building 
and road information to understand the building outline of the involved city. In the map processing, 
the buildings are accounted for as 2D simple polygons as the real data set described in IV doesn’t 
contain accurate altitude information of UEs. Figure 32 shows an overall association between a UE 
and a BS. The left side of Figure 32Error! Reference source not found. shows the processed map, 
in which red polygons represent typical buildings, and green polygons represent the foliage. BS is 
represented by a black circle, and UE is marked by a blue triangle. The right side of this figure shows 
zoomed areas of BS and UE. The connection between the BS and the UE is highlighted by a light 
blue line. 10000 such top-view geographical images with resolution 256×256×3 are collected to train 
the VAE, as described below. 
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Figure 32 - BS-UE association image generated from DRIVE simulator 

2) VAE architecture: VAE is a framework to learn deep latent-variable models and corresponding 
posterior inference models using stochastic gradient descent [3.19]. It consists of two sections, 
encoder and decoder, as shown in the lower half of Figure 31. The encoder, also called the inference 
model, learns the posterior on the low-dimensional latent space over the input data samples. The 
decoder is a generative model that learns the joint distribution of the latent variables and input data. 
In this study, the architecture of the encoder is in the form of VGG [3.20]. At the first convolutional 
layer of the encoder, a set of convolutional filters with sizes of 3 × 3, 5 × 5, 7 × 7 are applied to extract 
features from different dimensions, respectively, followed by a max-pooling layer. There are two 
convolutional layers with max-pooling after that. One flattened layer and one fully connected layer 
with 64 neurons are followed. Next, the output tensor is fed into a two heads output layer with 2 
neurons individually. The reparametrized variable Z will be the input of the decoder section. The 
decoder owns inverse architecture compared with the encoder. A dropout with ratio 0.25 was inserted 
between the flatten layer to enhance the robustness of training. The loss function is defined in Eq. 
(2). 

 
(2) 

where 𝜃 and 𝜙 are the trainable parameters of the encoder NN and the decoder NN, respectively. 

𝑞𝜃 (𝑧|𝑥𝑖) is the posterior inference from input sample 𝑖, 𝑝𝜙 (𝑥𝑖 |𝑧) the generative model given the 
latent distribution [3.21]. The first term in equation (2) is the expected data log-likelihood (assuming 
Gaussian probability density function, maximisation of this term amounts to minimisation of the 
reconstruction mean squared error), and the second term is the KL divergence between 𝑞𝜃 (𝑧|𝑥𝑖) and 

𝑝(𝑧) which regularises the latent space. The R,G,B channel of each sample 𝑖 is normalised to the 
range [−1, 1] for training. 

3.3.3.2 Second tier - Likelihood Model 

The likelihood model is designed based on an MLP. The detailed architecture is illustrated in the top 
right side of Figure 31. The first two layers are with 100 neurons and 50 neurons respectively, and 
the last layer has two heads with 50 neurons in each head, which output the mean and variance of 
each bin. The overall training feature of this model has been formalised in Eq. (3). It is a 6-
dimensional vector, where x_loc and y_loc represent the (𝑥, 𝑦) coordinates. The BS is 3-sectored. A 
UE belongs to one of the sectors of the BS it is associated with. Month specifies the month that data 
samples are collected. It is worth noting that the 2-dimensional auxiliary feature generated by 
encoder section Z are also fed into the likelihood model. 
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(3) 

The loss function for training is the Gaussian negative log likelihood loss, which is defined as: 

 
(4) 

where 𝜇𝑖 and 𝜎𝑖 are the numerical outputs of the likelihood NN model; 𝑦𝑖 is the corresponding label 

of a sample 𝑖. Feature normalisation is also adopted for the likelihood model. 

3.3.3.3 Training and Validation 

Experiments are performed using the Intel 2 E5-2640v4 CPU, 2 RTX 2080Ti GPU. The data pre-
processing is performed by the CPU whilst the training stage relies on the GPU. The training is based 
on PyTorch. The training and validation set are divided according to the 80% and 20% of the total 
both for the VAE and likelihood model. The batch size of VAE is 50 and for the likelihood model is 
3000. Both models use Adam as an optimiser (default learning rate). 

3.3.4 Real World Datasets and Model Evaluation 

3.3.4.1 Data pre-processing 

The real-world dataset is provided by BT Labs, recorded the monthly data of about 16,000 bins 
served by one BS. Each bin covers a square of 10𝑚×10𝑚. A bin may also be referred to as a tile in 
this work. Each sample of data includes the central coordinate position of the tile and multiple 
recorded RSRP samples. We chose two datasets with significant seasonality, namely January and 
August, to evaluate our proposed model. The details of the datasets can be found in the first 3 
columns of Table 1. Specifically, the number of samples recorded in each sector and months. The 
datasets do not contain any data involving user-specific information. Due to the uncertainty of the 
transmission channel, outliers are removed using Hampel’s filter. Here, the median of the whole 
dataset was first calculated, and then the absolute deviation of each data sample from the median 
was obtained. Also, the median of the deviations was evaluated. We consider any data point greater 
than the absolute deviation against the value of 4.5×median of the deviations as an outlier. This 
Hampel’s filter is applied on the latitude and then on longitude. The UE distributions of August after 
removing outliers can be seen in Figure 33. 

 

Figure 33 - The UE distribution after removing outliers. The red, green and blue dots indicate UE that are associated with 
respective sector. 
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3.3.4.2 Evaluation results 

In this section, the evaluation results of the proposed two tier NN model using two real datasets are 
provided. We evaluate the models in terms of the average RSRP prediction error through a 20-fold 
cross-validation scheme, and early stopping is adopted in the training with a stop patience of 8. The 
VAE was trained in an offline way. The VAE models with the same parameters were used to assist 
different likelihood models training under different months. Linear regression and simple MLP 
techniques are used as the baseline for compassion. The MLP model doesn’t contain the 
environmental extractor and mimics the same architecture in Section III-B. The training feature of 
this model is defined in equation (5). To keep the consistency of evaluation, the training and validation 
set divide is the same as in the proposed two-tier NN model, and both models will be reinitialised for 
each fold. Three sectors involved in the datasets are validated independently. 

 
(5) 

The evaluation criteria is the mean absolute error (MAE) between ground-truth mean value 𝑎𝑖 and 

predicted mean value ˆ𝑎𝑖 . The MAE is calculated as 

 

(6) 

 

Table 1 - Data Information and Model Validation Results For Different Data Subset 
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Figure 34 - The boxplots (red for the 2-tier NN and blue for the typical MLP) of cross-validated MAE for RSRP prediction 
based on different sectors and months. 

Table 1 presents MAE results of the empirical model, MLP model and proposed two-tier NN. 

Compared with the empirical model our proposed model can improve the prediction accuracy by 

about 20%, and the largest increase accrues on the subset January sector C, where the MAE is 

reduced from 10.71 dBm to 6.758dBm, about 38%. Meanwhile, compare with the simple MLP model, 

the prediction accuracy of our proposed model has an improvement by nearly 10%, and the largest 

improvement lies in the August sector A, around 16.4%.  

Figure 34 demonstrates more detailed boxplot results, which summarize the distribution 

characteristics of the MAE on the test set in 20 fold cross-validation for both MLP and the proposed 

model. In general, our proposed model can be trained more stable (with fewer outliers) and have a 

smaller and more concentrated error distribution. 

3.3.5 Discussion 

This study presents a two-tier RSRP prediction model based on OSM processing and demonstrates 
gains across different real-world datasets. The training of VAE as an environmental information 
extractor can be separated from the subsequent network, which reflects good model reusability. 
Since the actual datasets do not contain the altitude information of the UE, so we do not regard the 
height as an independent feature during map processing and labelling. But the current model can 
easily implement the above extensions. In addition, the VAE latent vector is equivalent to regularising 
the training of the subsequent likelihood model, so the length of the latent vector needs to consider 
the number of real data features, and an excessively long latent vector will suppress the expression 
of real data features. The likelihood model involved in this work has the simultaneous output of mean 
and variance to optimize the loss function shown in Eq. (4). Since in the current dataset, not all tiles 
have unified multiple samples recorded and obey the Gaussian distribution. So, the output of 
variance is meaningless for some tiles. Therefore, its value can only be used as a reference for partial 
tiles. 
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3.3.6 Conclusions 

In this work, a novel two-tier NN architecture is proposed to realise the accurate RSRP prediction. 
The VAE-based environmental feature extractor constitutes the first-tier network which is used to 
distil the critical information from BS-UE association top-view geographical images, where the image 
generation is finished in a modified DT (DRIVE) by using OSM of the given area. Meanwhile, the 
second tier is designed as a likelihood model which takes the outputs of the above extractor and real 
data features for training. The numerical results evaluated on real-world datasets show the gains of 
the proposed model in terms of prediction accuracy. The overall accuracy improvement is more than 
20% and around 10% compared with the empirical and a simple MLP model respectively, and it can 
reach 38% and 16.4% improvement in the best validation case. 

3.3.7 Outcome of the study 

This simulation work is accepted by IEEE 33nd Annual International Symposium on Personal, Indoor 
and Mobile Radio Communications (PIMRC) conference to be published as cited below, 

 

* Li, P., Wang, X., Piechocki, R., Kapoor, S., Doufexi, A. and Parekh, A., 2022. “Variational 
Autoencoder Assisted Neural Network Likelihood RSRP Prediction Mode”l. In 2022 IEEE 33nd 
Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 
2022 
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4 Hierarchical and multiagent Reinforcement 
Learning 

4.1 Machine Learning Overview 

Machine learning (ML) is a field of artificial intelligence concerned with the development of algorithms 
which converge to an optimal solution and improve the system performance without human 
intervention [4.1] [4.2]. The ML paradigm is broadly classified into three different categories: 
supervised; unsupervised; and reinforcement learning. In the presented work, the reinforcement 
learning technique is employed to understand the influence of learning through continuous 
interactions in a dynamic environment on network performance. 

 

4.1.1 Introduction to Reinforcement Learning 

Reinforcement learning (RL) is a branch of artificial intelligence, a class of machine learning, that 
employs a reward and punishment policy to enable an agent to learn a solution to a decision problem 
by interacting with its environment purely through trial-and-error such that the overall reward value 
is maximized. Unlike other learning techniques, RL focuses on a goal-directed learning, therefore, 
depending on the consequences of the learnt action a reward is awarded to the learning agent in 
case of successful attempts else it is punished [4.2]. The key merit of RL is its ability to learn a 
solution without any prior knowledge of the environment or the reward function. However, one of the 
challenges in RL is the trade-off between exploration and exploitation. A learning agent aims to 
maximize the reward by effectively employing an action that has proven promising in the past. But, 
to discover such an action, the learning agent must try each available action. Therefore, the task of 
a learning agent is to explore all the available actions to learn and subsequently exploit the most 
efficient action in the future. Figure 35 shows a basic diagram of the RL. 

 

Figure 35 - Fundamental block diagram of reinforcement learning 

The most widely used reinforcement learning techniques in artificial intelligence domain as well as in 
wireless networks are Q-learning and state-action-reward-state-action (SARSA). 

Q-learning (QL) proposed by Watkin is one of the most popular RL techniques in widespread use in 
wireless and artificial intelligence domain. Here, a centralized array known as the Q-table is 
maintained. The values in the Q-table are called the Q-values and are initialized to unity, allowing 
the agent to start to learn with an equal choice among all available actions. The agent uses the 
learning policy to learn an action, whereas the update rule is employed to update the Q-value 
associated with each action. The Q-table, therefore, presents an analysis of the choice of behaviour 
of all the individual agents, while the Q-value represents the expected cumulative reward the agent 
receives by learning an action. The learning agent in Q-learning uses a learning policy, such the ε-
greedy policy, to learn an action with maximum value. The approach states that an exploratory 
random action is picked with probability ε otherwise a good policy action (greedy) is selected with 
probability 1- ε.  
The greedy action is selected using 

action = arg max (Q (s, a)) 
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Subsequently, a learning agent recursively updates the Q-value of each learnt action using the 
following update equation:   

 Q(s,a) ← Q(s,a) + α[r + γQ'(s',a') − Q(s,a)] 
 

where, Q (s, a) corresponds to the Q-value of the current state-action pair, α is the learning rate, γ is 
the discount factor, r is the reward received at each instance of time, and Q’(s’, a’) is the Q-value of 
the previous state-action pair. The learning rate parameter, α ∈ [0, 1] controls the convergence rate. 

The discount factor γ ∈ [0, 1] controls the importance of future rewards with respect to immediate 
rewards. r represents the reward value that is awarded for the learnt action, and Q’(s’, a’) is the 
maximum Q-value among the available actions in the next state (s’). 

4.2 Federated Learning for Traffic Steering in Macro Cell 

networks 

4.2.1 Introduction 

The Traffic steering is a hard problem which becomes more difficult the larger the number of 
participants. Thus, heuristic methods often fail to fulfil such high QoS demand. Therefore, machine 
learning-based algorithms are a more promising way to solve this problem. Machine learning (ML) 
based resource allocation for wireless networks have been studied for over a decade [4.3]. Yet new 
problems are still emerging, with new demands and new radio access technologies (RAT) such as 
effectively managing 5G new radio (NR) features. ML-based algorithms for resource allocation 
problems often use reinforcement learning (RL)-based methods [4.4]. These methods use a 
simulated environment to generate data to train RL agents by using these data. While there are 
number of RL formulations, we used a deep reinforcement learning (DRL) method for decision 
making in simulated environment. 

RL agents that have stochastic environments require an adaptation phase to achieve optimal 
rewards. In order to increase the convergence speed of model adaptation to the environment, a 
collaborative learning algorithm, namely federated meta-learning (FML) [4.5] is proposed to 
orchestrate the network in the O-RAN environment. 

There are several reasons to choose the FL framework for the O-RAN ecosystem. One of the main 
reasons is to generalise across the distribution of environments for RL agents [4.6]. Cellular networks 
contain highly dynamic and unique environments. Even well-trained RL agents may fail to adapt to 
the environment after deployment. If RIC management cannot deal with a quickly changing 
environment, it can cause significant QoE issues for users. Another reason is some areas may have 
different priorities than others in aspects of service types; for example, some applications may 
demand higher throughput, and some may need lower latency while communicating. We defined 
several QoS metrics such as throughput and latency to generalize the problem within the FML 
framework. 

Our motivation for using meta-learning approach for DRL algorithm is to enhance the adaptation 
process of RL agents. 

The reason for focusing on the adaptation process is that wireless communication in RAN is highly 
dynamic. Moreover, service demands are application-dependent (as mentioned be- fore) and, 
obtaining optimal solution faster plays a crucial role in intelligent resource management applications. 
Hence, we aim to train a DQN model that enables RL agent adapt to a new task i.e., latency, 
throughput, or caching rate, can be quick.  

We propose the form of FML which uses the reptile algorithm [4.7] for meta-learning. 

The major contributions of the work are as follows: 

• A RAT allocation environment which enables RL agents to train their DQN models for 

steering traffic between RATs to provide service to vehicles. 

• Various QoS performance metrics are measured in the environment. These QoS metrics 

are defined as unique tasks for the meta learning algorithm. 
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• A federated meta-learning framework is designed for higher convergence speeds to 

unseen tasks and environments. We distributed learning algorithms in the frame- work 

and analysed the results. 

• We evaluated how the rule-based approach and learning- based approaches are 

performing in our RAT allocation environment. Results show that the proposed FML 

algorithm performs the best among other approaches. 

• To the best of our knowledge, there is no paper that simulates a distributed setup for 
traffic steering which is supported by O-RAN architecture. 

4.2.2 AI-based Traffic Steering 

Federated learning (FL) [4.8] paradigm aims to perform training directly on edge devices with their 
own local data and employs a communication efficient model management scheme. While collected 
data is kept local, communication between the global server and edge devices contains only model 
gradients [4.8]. Therefore, FL is a communication and computation-efficient way of distributed 
learning algorithms. The server merges these updates to form a better more generic model for all 
environments. Model updates at local RL agents represent information about local environments. 
Thus, the global model collects representative information about the deployed environment without 
getting any state data. This feature prevents both constant data flow from deployed units and keeps 
private data local such as user equipment’s (UE) locations, routines, data usage, etc. After 
aggregating model updates at the server, the server forms a global model as a generic model for all 
agents. 

 

Federated reinforcement learning (FRL) enables RL agents to generalise environment by using 

collaborative scheme. Liu et al. [4.6] used FL framework to extend RL agents’ experience so that 

they can effectively use prior knowledge. Their objective is to improve adaptation speed to a new 

environment by using this knowledge. Our proposed method uses various environments for the same 

motivation as well. However, in addition to FL framework, we also employ meta-learning to enable 

RL agents to adapt faster to new QoS tasks as well as environments. 

The FML algorithm is used to increase converging speeds to unseen tasks [4.9]. This feature enables 

RL agents or any other DNN-based learning algorithms to adapt to new tasks faster. Yue et al. [4.5] 

used FML approach to maximize the theoretical lower bound of global loss reduction in each round 

to accelerate the convergence. Unlike our approach, they added user selection mechanism 

according to contributions of local models. 

Besides RL-based methods, there is also recurrent neural network (RNN) based FML methods 

[4.10]. Zhang et al. used different cities as meta-tasks to train an RNN model to predict network 

traffic. While they used each city as task, we used each QoS metric in the network as a meta-task in 

this simulation. In both way, tasks are not completely independent. Network traffic for cities usually 

represents a seasonal behaviour that changes accord the time of the day. Therefore, traffic demand 

changes at similar times but in different volumes. In our use case, we used different QoS metrics as 

tasks and they are indirectly dependent as well e.g., higher throughput will lead to transmit data in 

less time and it will decrease the latency. 

There are many ML-based resource allocation papers in the literature [4.11]. However, there are only 
a few studies that use ML to provide a solution to traffic steering use case since it is relatively new 
problem. Adamczyk et al. [4.12] used an artificial neural network trained with the SARSA algorithm 
for traffic control in RANs. For traffic steering use case, they allocated resources among the users 
according to base station load. They defined different user profiles according to their data rate 
demands. In our study, we define these demands as meta-tasks. Thus, after the deployment of an 
RL agent, it adapts to a new demand profile more rapidly. 

In this use case, we consider a connected urban system model with multiple users moving along 
roads. A multi-Radio Access Technology (multi-RAT) Base Station (BS) is set in this area, providing 
network coverage to users. Each user has download service requests to be satisfied by the BS, such 
as road condition information downloading, or other internet services like web browsing or video 
streaming. Note that each request has its own lifetime. These requests are made by the users and 
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stored at the BS. A scheduler is located at the BS, serving downloading requests of all users in an 
efficient manner. 

 

Figure 36 - Traffic steering simulation environment map. 

4.2.2.1 Urban User Model 

Consider an urban area shown in Figure 36, with a 1 km by 1 km map. The multi-RAT BS is located 

in the middle to provide better coverage. Users can be approaching or leaving the BS. Note that 

there can be a T-junction, crossroad, roundabout, etc. in the centre. In this simulation, the number of 

vehicles is always 5. When one vehicle leaves this area, another vehicle will be automatically 

generated to maintain a constant vehicle number. 

4.2.2.2 I2V Connectivity Model 

We assume that the BS provides connectivity across 𝑅 RATs. In the case of I2V connectivity, for 
each RAT, we define the downlink data rate 𝑟𝑖, 𝑗 achieved by the BS to vehicle 𝑖 over the RAT 𝑗 as 
follows: 

𝑟𝑖, 𝑗 = 𝜎𝑗 log2 (1 + SINR𝑖, 𝑗 ) (7) 

Where 𝜎𝑗 is the bandwidth of the RAT 𝑗 and SINR𝑖 is the Signal-to-Noise and Interference Ratio 

(SINR) associated with the downlink transmissions originating to vehicle 𝑖 over RAT 𝑗 . In particular, 

we define SINR𝑖, 𝑗 as follows: 

 

(8) 

Where: 

• 𝐺𝑗 signifies the overall antenna gain 

• 𝑃𝑗 is the transmission power for transmitting over RAT 𝑗 

• ℓ( 𝑗 ) (𝑑𝑖) expresses the path-loss at a distance 𝑑𝑖 (between the BS and vehicle 𝑖) and it 

is defined as 𝐶𝑗 𝑑i^(−𝛼𝑗 ) – 𝐶𝑗 and 𝛼𝑗 are constants associated with RAT 𝑗 

• ℎ 𝑗 is a random variable modelling the fast fading component and it depends on the RAT 

in use. 

• 𝑊𝑗 represents the white thermal noise power. It can be seen as a constant that depends 

on the RAT in use. 

• 𝐼 𝑗 is the interference power. Here we assume 𝐼 𝑗 = 0, thus SINR𝑖, 𝑗 = SNR𝑖, 𝑗 . 

Considering the 𝑖-th vehicle 𝑣𝑖 , we say that through every request, it requests a ‘job’ 𝐽𝑖 , which 

consists 𝑇𝑖 data frames, namely, 𝐽𝑖 = {𝑣𝑖,1, . . . , 𝑣𝑖,𝑇𝑖 }) from the BS. Each data frame has an identical 
size, while each job is associated with a lifetime, that is, a downloading deadline. If the job has not 
been downloaded before its deadline, it will be discarded, thus the corresponding request is not 
satisfied. During transmission, if any data frame is not successfully downloaded due to any possible 
reasons, it would be regenerated and transmitted again. 
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4.2.2.3 System Goal and Tasks 

The goal of this system is to design a scheduler to dynamically meet vehicle downloading requests 
by using multiple RATs in an efficient manner. 

 

1) Caching rate: The caching rate is the ratio of successfully transmitted bytes/packets over all 
requests. We define caching rate as follows: 

 
(9) 

2) Latency: Latency is calculated as follows: 

 
(10) 

where 𝑡𝑐 is the completion time and 𝑡𝑑 is the total deadline time. Since there are two different job 
sizes, creating proportional latency values is fairer than calculating the remaining time in seconds. 

3) Throughput: Throughput metric is calculated as follows: 

 
(11) 

where 𝑇𝑐, 𝑇𝑙 are successfully transmitted bytes in completed jobs and lost jobs respectively. 𝑡 is the 
time duration in the simulation step. 

4) Proportional Fairness:  

Fairness is a comprehensive term. Fairness in network can be based on different metrics such as 

latency, throughput, availability etc. To simplify calculations in simulation we used proportional 

fairness in terms of throughput distribution among users [4.13]. It is calculated as follows, 

 
(12) 

where 𝑥𝑣 is the flow assigned to the demand of vehicle 𝑣. 

The data scheduler aims to find a policy, deciding which data frame to be sent through which RAT 
at each time step, providing good data downloading service upon request. We assume that each 
vehicle is equipped with a Global Positioning System (GPS) service and the vehicle location 
information are accessible by BS real-time. 

There are two RATs available at the BS. One is the 4G (LTE), and the other is 5G NR. The 

communication range of LTE covers the whole simulation area, while 5G NR only covers part of the 

area. Simulation parameters can be found in Table 2.  

This problem can be modelled as a Markov Decision Process (MDP), with the finite set of states’ S, 
the finite set of actions A, the state transition probability P and the reward R. 

 

Table 2 - Environment parameters 
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States: At time 𝑡, the state S𝑡 can be represented as 

 
(13) 

Here 𝑆𝑡𝑈 is the user(vehicle) states and 𝑆𝑡 𝐵𝑆 is the BS status at time 𝑡. For simplicity, we do not 

specify the time 𝑡 unless necessary in this work. 𝑆𝑈 can be written as 𝑆𝑈 = [(𝑥1, 𝑦1, 𝑣𝑥,1, 𝑣𝑦,1), ..., 

(𝑥𝑛, 𝑦𝑛, 𝑣𝑥,𝑛, 𝑣𝑦,𝑛)], where 𝑥𝑛, 𝑦𝑛, 𝑣𝑥,𝑛, 𝑣𝑦,𝑛 are the geographical position and velocity of user 𝑖, 

respectively. 𝑛 is the number of users. 

For the BS status, it contains the job buffer, status of RATs, and the link status of the ‘BS - vehicle’ 
connections, represented as 𝑠𝑏, 𝑠𝑅 and 𝑠𝑐, respectively. 

 (14) 

With length of 𝑙 the buffer status can be written as 

 (15) 

where (𝑝𝑖 , 𝑢𝑖 , 𝑡𝑖) are the number of packets left for current job 𝑖, the vehicle which requested job 𝑖, 

and the time left for job 𝑖 before it would be discarded, respectively. To show the RATs status, we 

use binary values to describe their availability: 

 (16) 

If there is no packet being downloaded through the first RAT, LTE, then 𝑎 = 1, meaning that the first 

RAT is currently available, and vice versa. 𝑏 represents the status of the second RAT, 5G NR. 

As for the ‘BS — vehicle’ connection status, we show the potential data rate each vehicle could get 
through two RATs at its current position. 𝑠𝑐 can be written as: 

 (17) 

Here 𝑑𝑟 (𝑚,𝑖 ) means the data rate vehicle which 𝑖 could obtain through RAT 𝑚. 

Actions: The action space for the BS is defined as A = ({0, 0}, {0, 1}, ..., {𝑇, 𝑗 }, ∅), where {𝑇, 𝑗 } 

means to download a packet of the 𝑇𝑡ℎ job from the buffer to the required vehicle through RAT 𝑗 , 

with ∅ meaning no action. Note that if more than one RAT is available, then the BS could choose the 

maximum of two actions at one time step. 

Reward: The goal is to schedule the data downloading process so that the BS could satisfy vehicle 
requests in an efficient manner. 

1) (R1) RAT usage reward: for every unused RAT at each time step, the agent receives a reward of 

-1. 

2) (R2) Lost job reward: for every lost job, the agent receives a reward of -100. 

3) (R3) Successful job reward: for every successfully finished job, the agent receives a reward of 

+10. 

4) (R4) Latency: for every successfully finished job, the agent receives a reward of +10(1 − Δ𝑡). 

5) (R5) Throughput: for all jobs, total bytes transmitted are calculated and the agent receives a reward 

of +0.1𝑇. 

6) (R6) Proportional fairness: for all vehicles in the environment, the agent receives a reward of +𝐹(𝑥). 

4.2.2.4 Heuristic action selection 

The RAT allocation simulation environment is a unique environment. Therefore, to compare results 
with the proposed approach, we designed a heuristic action selection algorithm as a baseline. The 
heuristic algorithm utilizes the same state information as an RL agent to decide on its actions, and 
then will try to provide an optimal solution according to the state. This heuristic is given as 
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This heuristic is designed to choose 5G when 𝑈𝐸𝑥 is one of the destinations UEs in the buffer. Since 
the 5G NR service has higher data rates, it can complete jobs faster and reduce the loss of jobs. 
However, in our simulation setup, we defined a 5G NR data rate as lower than LTE when a UE gets 
closer to the border of the 5G NR coverage area. We expected our RL agents to learn this pattern 
and manage resources according. 

4.2.3 Federated Meta-Learning For O-Ran Traffic Steering 

In this simulation, we use FML algorithm [4.8] to provide both a hierarchical and fast-adapting 
framework. FL low communication overheads permits deployment at end devices. We consider 
deployment at either RICs or E2 nodes [4.14] as a resource management unit in the hierarchy. When 
the FML algorithm is deployed in the field, it will require data with the least latency. Hence, the action 
decisions of the RL agents will not expire for the collected state information from the environment. 
We assume state information of simulation is collected close to real-time. Therefore, any latency 
caused by transmitting data from RU to RIC is ignored in this work. The proposed FML algorithm for 
traffic steering in O-RAN is given in Algorithm 2. 
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In this algorithm, 𝑁 is the number of FL aggregation cycles, and 𝐾 is the number of parallel 
environments. Since each environment is managed by a single RL agent 𝐾 also equals the number 

of RL agents. 𝐸 is the number of training cycles for each RL agent, and 𝐼 is the number of training 
tasks. These tasks are used to train models in meta-learning algorithm. Numvehicles is the number of 
vehicles in each environment, and Size Buffer is the buffer capacity for each environment. After 
registering these data, the simulation initializes 𝐾 unique environments for each RL agent. These 
environments have different vehicle starting points in the simulation map as shown in Figure 36. 
Before beginning the training all buffers are filled with Type A and B jobs randomly as given in Table 
I. Each RL agent trains its DQN model in their own environment. DQN algorithm aims to find optimal 
policy to obtain optimal return according to state and action. DQN algorithm estimates the action-
value function by using the Bellman equation as in equation (18) [4.2]. 

 
(18) 
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Figure 37 - Federated meta-learning framework set-up for traffic steering. 

Here the RL agent tries to find the best action 𝑎′ for corresponding state 𝑠′ to find optimal policy. To 

prevent unstable updates, gradients are limited by a discount factor 𝛾. After 𝐸 cycles they upload 

their model parameters to the server. Then server aggregates these model updates with the FedAvg 

algorithm [4.18] to form a global model as given in equation (19). After aggregation for 𝐾 agents is 

completed, the server broadcasts global model 𝜃Global back to the RL agents. The RL agents use this 

pre-trained global model in their environment in the next FL aggregation cycle. 

 

(19) 

4.2.3.1 Meta-Learning Tasks 

The goal of meta-learning is to train a model which can rapidly adapt to a new task using only a few 
training steps. To achieve this, RL agents train the model during a meta-learning phase on a set of 
tasks, such that the trained model can quickly adapt to new tasks using only a small number of 
adaptation steps [4.15]. Since RL agents are deployed in a simulation environment where UE 
trajectories are likely to be unique, RL agents will try to adapt to this unseen environment. Moreover, 
as mentioned before besides the UE trajectories, the demands of UEs can differ in each environment. 
Hence, we used four different tasks to train RL agents in the meta-learning phase and observe them 
adapt to the fifth one. After every four rounds, RL agents update their DQN models according to 
equation (20), 

 

(20) 

Here 𝛽 is the meta-step size, which scales model updates, and 𝐼 is the number of tasks to train in a 

meta-learning manner. Scaling updates prevents DQN model from fully converging to a specific task. 

Instead of a specific task, it is expected that the DQN model converges to a point where it can adapt 

to an unseen task as quickly as possible. Six different reward functions are described in meta-tasks 

section for meta-learning methods. Five unique tasks are defined by using these reward functions; 

the tasks are listed as follows: 

1) Task 1 is the most comprehensive reward that an RL agent can train in this environment, which is 

calculated as 𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5 + 𝑅6 
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2) Task 2 is reward based on proportional fairness, calculated as 𝑅1 + 𝑅6 

3) Task 3 is latency-prioritized reward, calculated as, 𝑅1+𝑅4 

4) Task 4 is throughput-based reward, calculated as 𝑅1 + 𝑅5 

5) Task 5 is reward based on caching rate, calculated as 𝑅1 + 𝑅2 + 𝑅3 

Here 𝑅 is the reward function described previously. In the Reptile algorithm and the FML method, RL 

agents use the first four tasks for training and all methods try to adapt the 5th task in the adaptation 

phase, while a single DRL agent uses only Task 1 for training and tries to adapt Task 5. 

4.2.3.2 O-RAN and Traffic Steering 

There are several resource types in the O-RAN structure and the demands of UEs can change the 
scheme of resource management. However, the action space for RL agents grows exponentially with 
number of dimensions of resources to be managed. Since most of the RL algorithms depend on 
explore-and-exploit methods, using multiple RL agents collaboratively is likely to enhance 
exploration, and help RL agents converge to better rewards faster. Hence, this is one of the major 
reasons for proposing the FML framework for traffic steering in O-RAN. Simulation results show even 
a single resource type such as the RAT allocation problem can be handled better with collaborative 
learning of multiple RL agents. 

4.2.4 Simulation Results and Discussions 

A. Simulation parameters 

In traffic steering simulations, we observed several parameters in the simulation to see how FL 
performs under different conditions. In most of the simulation runs, FML performed significantly better 
than other methods, but on some occasions heuristic and FML performance was almost equal. We 
ran a simulation with 20 different parameter combinations, and an average performance comparison 
is achieved with the parameters as, the number of FL aggregating cycles is 𝑁 = 10, the number of 
training tasks is 𝐼 = 4, number of created environments (and RL agents) in FL network is 𝐾 = 5, 

number of episodes before aggregation is 𝐸 = 100 and time interval between environment steps is 

Δ𝑡 = 1ms. Note that, to have a fair comparison, single DRL and Reptile-based DRL agents are trained 

equally as much as RL agents in the FML framework. In this case, it is 𝑁 ∗ 𝐸. 

 

B. Caching performance results 

In the simulation, we tracked lost packets and lost bytes in each lost packet to calculate a caching 
rate performance indicator. Each method has been run for 10 validation runs in an unseen 
environment (unique environments in terms of UE trajectory) in the training phase. After 10 runs for 
each parameter combination, we averaged the caching results to get the final score for each 
approach which is given in Table 3. 

 

Table 3 - Caching-rate performance comparison 

As shown in Table 3, the proposed FML approach achieves the highest caching rate performance 

amongst the compared methods in terms of packets and bytes. We calculated these results as the 

ratio of successfully transmitted bytes/packets over total requests. 

 

C. Adaptation performance 

Simulation results show that FML method improves adaptation performance from the very first 

training episodes. As a quantitative comparison, RL-based algorithms try to reach heuristic method 

performance as soon as possible. According to Figure 38, the FML algorithm achieves heuristic 
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equivalent performance the quickest among all methods. Zero-shot adaptation performances of 

different methods are compared in Table 4, where HEP is heuristic equivalent performance. 

 

Table 4 - Adaptation performance comparison 

 

Figure 38 - Adaptation performance comparison to unseen task and environment. 

4.2.5 Discussion 

As shown in Table 3, FML has demonstrated to be a better solution for designed traffic steering 

simulation. Even though we observed similar training performances for a single RL agent and FML 

agent, FML performed better in an unseen environment. The FL framework takes advantage of 

collecting information from various environments, and so it becomes easier to adapt to a new 

environment. There are cases where a single learner performs better than the global model because 

of the issue of collected not independent and identically distributed (non-iid) data. Nevertheless, there 

are other solutions to prevent performance deterioration at the global model [4.16]. In future work, 

we will add new resource types to this environment. Traffic steering is a comprehensive use case, 

since the 5G NR standard allows service providers to collect various communication-related data 

from UEs, it is more likely to have AI/ML-based solutions for such problems [4.11]. 

4.2.6 Conclusion 

In this work, we have focused on the generalization of different tasks and environments by using the 

FML framework. As a use case, we used traffic steering in O-RAN architecture. We designed a traffic 

steering environment to investigate how DRL-based learning algorithms perform in such an 

environment. While unique environments are created for every RL agent in a stochastic way, RL 

agents try to manage RIC and allocate RAT services among UEs in the environment. We have 

analysed the convergence speed of the DRL algorithm that uses a single task and single 

environment. Another DRL algorithm that uses multiple tasks in the Reptile algorithm and single 

environment and proposed FML framework that uses multiple tasks and multiple environments to 

train RL agents. Simulation results confirm the effectiveness of our proposed algorithm. Future work 

can investigate how the FML framework deals with managing multiple radio resources on RICs. 
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4.2.7 Outcome of the study 

This simulation work is accepted by IEEE 96th Vehicular Technology Conference (VTC2022-Fall) to 

be published as cited below, 

* Erdol, H., Wang, X., Li, P., Thomas, J.D., Piechocki, R.J., Oikonomou, G., Inacio, R., Ahmad, A., 

Briggs, K. and Kapoor, S., 2022. “Federated Meta-Learning for Traffic Steering in O-RAN”. In 2022 

IEEE 96th Vehicular Technology Conference (VTC2022-Fall), 2022. 

 

4.3 Indoor Small-Cell Power Optimisation 

4.3.1 Indoor pathloss models 

The AIMM simulator indoor pathloss module represents walls, floors, and ceilings by planar panels 
made up of triangular sections. Each panel can have a specified signal absorption (wall loss), 
typically in the range 10 to 15 dB.   Once these panels are instantiated, every pathloss calculation in 
the simulator will involve computing the number of panels intersected by a line joining the cell location 
to the UE location.   This wall loss is added to either a free-space pathloss computed from the 
distance, or alternatively the 3GPP InH indoor propagation model can be used.1 This is provided as 
an AIMM Sim function.   

We emphasize that this is not a ray-tracing code; experience shows that ray-tracing would be much 
too slow for the ML application envisaged, and would probably add little accuracy. 

4.3.2 Indoor mobility models 

Another design issue concerns appropriate UE mobility models in these scenarios. Though it is not 
realistic, it is probably nevertheless acceptable in the simpler simulations to have user walking right 
through walls. A model we used frequently to train ML models was the one we called “wave”.  Here 
the users start with a uniform distribution over the building, but gradually all move to one end of the 
building, and then back to uniform. This cycle repeats indefinitely. The intention is to provide the ML 
agent with experience on extremes of user distributions, from completely uniform to highly non-
uniform. 

For cases where this is not acceptable, an experimental “billiard” model was implemented. In this 
model, users are given an initial position and velocity, and then make soft bounces off walls and 
partitions. The softness of the bounce is a controllable parameter. 

As examples, Figure 39 shows a typical three-room building with a billiard UE path (defined below), 
and Figure 40 shows a larger open-plan office, with the UE path bouncing off the exterior walls but 
not the internal partitions. These diagrams are automatically created by plotting functions in the 
simulator code. Cell locations are the large red dots. 

 
1 Specification # 36.873 (3gpp.org) 

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2574
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Figure 39 - Example three-room building. 

 

Figure 40 - Example open-plan office with partitions. 
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4.3.3 The indoor small-cell power-control use-case 

The aim is to have ML agent learn to control the transmit power of two or more indoor small cells, in 
such a way as to react to changes in UE location. The hope is that by suitably setting the powers, 
the impact of interference on throughput will be minimized.  

A very important question concerns the choice of objective function, or (in ML applications), the 
reward function.   It might be thought that average (or total) downlink throughput across all UEs would 
be a suitable objective function to be maximized. However, experience show that this can be bad 
because a high average can be achieved by giving all (or most) resources to a single UEs which 
happens to be close to a cell.  This is an unfair allocation.   

A better possibility is to try to maximize the minimum throughput, so that the worst-served UE gets 
the best possible service. But this can also be a poor objective, as a large proportion of system 
resources may be given to a UE which is in such a bad location that it will never get a good service.   
Therefore, we have used a compromise: we compute the distribution of throughput across all UEs, 
and then estimate a lower quantile, such as the 10% or 25% quantile. This is then the statistic which 
we try to maximize.  It does of course mean that any UE below the chosen quantile will have no 
guaranteed level of service, and it also means that the average throughput is not controlled directly 
and has no guarantee.  The essence of the problem is that we are trying to control a whole distribution 
with a small number of parameters (perhaps only one). From that point of view, there is no perfect 
solution. 

4.3.4 Results 

Our main aim is to determine whether reinforcement learning (RL) performs better than a simple 
heuristic (SH). What is called here a “simple heuristic” is in fact a very simple, but exact, algorithm, 
which simply tries all power settings and picks the one which maximizes the quantile mentioned 
above. It is, in effect, an exhaustive search. 

The scenario has four cells in six rooms, as shown in Figure 40. The users (UEs) move according to 
a wave model, meaning that they start with a uniform distribution, and gradually concentrate at the 
left-hand wall. They then return to the original uniform distribution and repeat this pattern indefinitely.   
Two complete cycles can be seen in the plots. 

The four plots below compare RL against SH for indoor propagation, with line-of-sight (LOS, no 
walls), and non-line-of-sight (NLOS, with walls). In all cases the most important statistic is the second 
light blue curve in the uppermost plot.   This is the 25% quantile of throughput, and we want to 
maximize this.  The cases, with a summary of performance, are: 

1. SH, NLOS.  The quantile averages at about 1.5Mb/s. 

2. SH, LOS.     The quantile averages at about 0.7Mb/s.  It is lower than the previous case, as 
the absence of walls increases interference. 

3. RL, NLOS.   The quantile averages at about 1.5Mb/s. 

4. RL, LOS. The quantile averages at about 0.7Mb/s.  It is lower than the previous case, as the 
absence of walls increases interference. 

The conclusions are very simple - reinforcement learning performs very similarly as the simple 
heuristic. Since the simple heuristic in fact performs optimally, then so does RL. But RL has much 
higher complexity, both implementation and computation. We conclude that RL has nothing to offer 
for this use case. 
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Figure 41 - Simple heuristic, non-line-of-sight. 

 

Figure 42 - Simple heuristic, line-of-sight 
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Figure 43 - Reinforcement learning, non-line-of-sight. 

 

Figure 44 - Reinforcement learning, line-of-sight 
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4.4 Transmit Power Control for Indoor Small Cells: A 

Method Based on Federated Reinforcement Learning 

4.4.1 Introduction 

With the continuous development of 5G technologies, 5G-related services inevitably have begun to 
enter indoor environments, with signal coverage provided by microcells or femtocells. The 
deployment location, power setting, resource allocation, and antenna gain of such small cells will 
greatly affect the quality of service (QoS) for UEs. Therefore, there is rich research targeting the 
optimization of small-cell-related settings. Recently, machine learning (ML)-based, especially 
reinforcement learning (RL)-based algorithms appear attractive in this domain because of their 
proven success in solving complex optimisation problems. For instance, the interference control in a 
heterogeneous network utilising Q-learning was discussed in [4.17]. Similar Q-learning-based power 
control for indoor voice over LTE radio bearer was proposed by [4.18]. Recently, Mismar et al. put 
forward a deep Q network (DQN)-based method for joint beamforming, power control, and 
interference coordination [4.19]. In [4.20], multi-agent RL (MARL) is adopted to realise self-organising 
and power control in heterogeneous networks. In comparison, the MARL method is adopted in [4.21] 
to tackle interference mitigation for indoor coverage for 5G (and beyond) systems. In [4.22], the 
authors put forward an RL framework for uplink power control. A federated DQN approach for user 
access control is proposed in [4.23] under the context of O-RAN. 

However, it is noticeable that existing approaches are discussed without differentiating scenarios 
and are mainly for outdoor macro cells. The underlying assumption is that such environments share 
the common signal transmission properties and UE patterns, so that the trained RL models can be 
applied to other scenarios. However, such assumptions do not hold for indoor scenarios. As the UE 
moving patterns largely depend on (or are limited by) the layout of the room, the optimal model in 
one room can be drastically different from others, i.e., the model is room-dependent, which is difficult 
to serve in other rooms. To increase the model’s generalisation ability, a training process considering 
multiple indoor environments is needed. Also, from the view of the indoor network provider, it is 
necessary to have a general model that can be deployed into a new scenario with zero or minimal 
amount of learning. Meanwhile, the training process ought to be controllable and not consume too 
much bandwidth. 

The two considerations motivated us to develop a federated reinforcement learning (FRL) framework 
in this work. The adoption of FRL involves the updates of RAN at the hardware and cloud system 
and correspondingly, the data collection and model deployment pipeline. Fundamentally, the O-RAN 
architecture enables the feasibility of executing the ML/RL model through radio intelligence 
controllers (RICs) [4.24]. For each room, an independent RL agent is needed, while all rooms 
together cerate the federated learning (FL) learning paradigm. It is worth pointing out that the 
definition of “state” in the RL model used here relies only on off-shelf cell information, like CQI. FRL 
is promising because it involves neural network parameters communication rather than real user 
data, which removes privacy concerns for indoor 

UE information. Meanwhile, the global model trained by FRL can adapt to a new environment more 

rapidly. The FRL framework is a step towards intelligent RAN. The contributions of this simulation 

work are summarised below: 

• For indoor cell transmit power control, this is the first work that considers the variation of 

RL model training in different room layouts. 

• We put forward an FRL framework to solve the generalisation, distribution, and adaption 

problems of the model under the context of O-RAN. 

• Extensive simulations are performed to demonstrate the gains on throughput and 

generalisation ability of the proposed method. 

• The simulation process strictly follows the hierarchical orchestration structure of O-RAN, 

where the RICs are established on top of the simulation environment. It provides a 

simulator design paradigm compatible with ML and RL. The document of code for the 

entire simulator is available at: https://aimm.celticnext.eu/simulator/. 

https://aimm.celticnext.eu/simulator/
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4.4.2 Background 

4.4.2.1 O-RAN 

O-RAN is a new emerging architecture for the radio access network. It is attracting much attention 

due to two proprieties: openness, and intelligence. Openness means that it adopts a standard and 

well-defined hardware interfaces and software services, so the equipment or interfaces involved in 

O-RAN are not vendor-specific. More importantly, it embraces artificial intelligence (AI) in its basic 

standard formulation. Two types of RIC are designed in O-RAN to realise intelligent control of the 

entire network: non-real-time RIC and near-real-time RIC. AI or ML models can be deployed into 

RICs in the form of microservice applications, i.e., xApps and rApps. 

4.4.2.2 RL and DQN 

RL is a class of learning paradigms in ML. The agent focuses on the actions of interacting with the 

environment to achieve the largest accumulative rewards. DQN is a relatively mature and a widely 

used algorithm of RL. It has been proposed for controlling complex video games only using images 

[4.25]. The idea of DQN lies in the use of deep neural networks (NN) 𝑓𝜃 , to estimate the state (𝑠)-

action (𝑎) value (𝑄 value), that it 𝑓𝜃 = 𝑄(𝑠, 𝑎). Taking the action 𝑎 in the given space, the optimal 

policy can be constructed as: 

 
(21) 

𝑄∗ (𝑠, 𝑎) obeys the Bellman optimality equation [4.2]: 

 
(22) 

To learn the 𝑄 value at iteration 𝑖, the following loss is minimised with respect to 𝜃: 

 
(23) 

Where: 

 
(24) 

Meanwhile, an experience replay mechanism and a target network are introduced in DQN to stabilise 
the training process. 
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Figure 45 - System diagram of FRL framework 

4.4.2.3 Federated Learning 

FL is an ML setting in which multiple clients collaboratively train a model under the orchestration of 
a central server, while keeping the training data decentralized [4.26]. Due to concerns of privacy and 
communication efficiency, the training paradigm is that local models need to upload the model 
parameters to the global model (in the central server), and the global model returns the model 
parameters after parameters aggregation. In this work, we apply FL to the RL paradigm. 

4.4.2.4 Simulator Design 

In this simulation work, the simulator not only plays the role of radio link simulations, but also 

undertakes the work of office layout and UE trajectory generation. It is also the venue of RL agent 

and FL instantiation and training. Meanwhile, the trained model aims to be transferred to the O-RAN. 

Hence, the interfaces between RL agents and radio simulations should be specified. The definition 

of the simulator’s functionalities obeys the hierarchical architecture of O-RAN strictly. It adopts a 

process-based discrete-event simulation framework, so different processes like RICs, Logs, and 

mobility management entities (MMEs) execute in parallel without interfering with each other. 

4.4.3 Problem Formulation 

This work studies a scheme for transmission power control of small cells in distributed indoor 

environments. Each indoor environment is viewed as being controlled by an independent local RL 

agent, while multiple RL agents are orchestrated by FL. FL distributes the model from the central 

server to the local agent, and aggregates local models to a new global model periodically. The system 

diagram is shown in Figure 45. 
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Table 5- CQI Table [4.27] 

4.4.3.1 Cells Transmit Power Control in a Single Room 

It is assumed that there are 𝑀 cells and 𝑁 UEs in a single room and no subband or physical resource 

block allocation is considered. The downlink data rate 𝐶𝑚,𝑛 from the cell 𝑚 to UE 𝑛 can be modelled 

as follows: 

 (25) 

where 𝐵𝑚 is the bandwidth of the cell 𝑚 and SINR𝑚,𝑛 is the Signal-to-Noise plus Interference Ratio 

(SINR), which is determined for the transmission from cells to UEs. The SINR𝑚,𝑛 is defined as 

follows: 

 
(26) 

Where: 

• 𝐺𝑚, 𝐺𝑚 are the transmission and receiver antenna gains. 

• 𝑃𝑚 signifies the transmission power of cell 𝑚. 

• ℓ(𝑚) (𝑑𝑛) expresses the path-loss at a distance 𝑑𝑛 (between cell 𝑚 and UE 𝑛). 

• 𝑊𝑚 represents the thermal noise power. 

• 𝐼𝑖,𝑚 is the interference power received. 

In the process of code implementation, the SINR𝑚,𝑛 will be first converted to the corresponding 

Channel Quality Indicator (CQI) value, then the final data-rate is calculated according to the 

relationships demonstrated in Table 5. 

Optimisation Objective: For a local RL agent, the optimisation objective is to maximize the overall 

throughput of the entire room. The objective function is written as: 



AIMM Project, WP5, D5.2 page 77 (123) 

© AIMM Consortium  

 

(27) 

where 𝑃POT is the set of possible transmission power levels. 

 

 

4.4.3.2 Markov Decision Process 

We formulate the problem in (27) as a finite Markov decision process (MDP). An MDP is defined by 
the tuple (S,A, P, R, 𝛾), where the set of environment states is represented by S; A is the action 

space of agent; P is the transition probability from state 𝑠 ∈ S to state 𝑠′ ∈ S for any given action 𝑎 ∈ 

A, and R is the reward function. 𝛾 is the discount factor. 

Steps and Episodes: In one room, an episodic task is defined. Each episode contains 100 sequential 
steps, while UEs move to new locations at each step. The possible locations of UEs are initially pre-
generated by a “billiard” model [4.28], when initialising the room layout. In this model, users bounce 
off walls. In the sequential decision-making problem, the RL agent looks for the optimal combination 
of transmission powers for all cells at each step and naturally in every episode. At each step, when 
a new action is performed, handover events for all UEs will be triggered immediately. The handover 
decision is based on Reference Signal Received Power (RSRP), which means that the UE always 
attaches to the cell with the highest RSRP. 

Furthermore, at time 𝑡, for 𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑁, the state, action and reward of the deep RL agent are 

defined as below: 

• State: The state 𝑠𝑡 is consist of three parts:  

o 1) the normalised transmission power of current 𝑀 cells 𝑃𝑚,𝑡 ; 

o 2) the number of UEs attached in the each cell 𝑁𝑈𝑚,𝑡 ;  

o 3) the CQI information of all UEs reported to different cells, that is 𝐶𝑄𝐼𝑚,𝑛,𝑡 .  
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So, the overall state is: 

 (28) 

• Action: The action 𝑎𝑡 at time 𝑡 is to select a transmission power for each cell. The action 

space is discrete. 

• Reward: The training criterion is the throughput of all UEs. In this simulation, under a 
joint consideration between the maximum throughput and the QoS guarantee for UEs, 
we take the 0.25 lower quantile of the distribution of throughput across all UEs, denoted 
Q1, as the optimisation objective. So the reward 𝑟 (𝑠𝑡 , 𝑎𝑡 ) of executing action 𝑎𝑡 at state 

𝑠𝑡 is defined as the quantile improvement of the entire network after this action, and any 
subsequent handover, have taken effect. 

 (29) 

It should be noticed that the reward design for this optimisation problem is flexible and goal-related. 
It depends on the focus of optimisation. For instance, we formalise the reward to equation (29) 
because we are concerned about the lowest QoS guarantee for all UEs. However, if more attention 
is paid to the balance of workload of cells, the reward can easily be redefined. 

4.4.3.3 The FRL Algorithm 

FRL is a promising and efficient method of RL to create a distributed paradigm and so preserve data 
privacy. In our case, FRL consists of multiple independent RL agents serving multiple rooms. Each 
local agent is acting as the cell’s transmit power controller for one room based on the global DQN 
model, which is aggregated by an FL algorithm, as shown in Figure 45. We adopt Fedavg as the 
default algorithm for global model aggregation [4.29]. For local agent 𝑘 ∈ 𝐾 with model parameters 

𝜃𝑘, the aggregation operation is expressed by equation (30): 

 

(30) 

Local agents upload their model parameters to the central server every 𝐸 cycles. Then the global 

model will be broadcast back to all agents after aggregation, and the global model serves as the pre-

trained model for each agent after broadcasting. The RL models will be installed in the RICs of ORAN 

through the form of xApps or rApps, to perform local training and parameter uploading, while the 

global model can be deployed in the central server of network operators. The overall FRL training 

scheme is illustrated in Algorithm 1. 

4.4.4 Simulation 

4.4.4.1 Room Layouts and User Mobility Mode 

To evaluate the performance of the proposed FRL scheme, we defined five typical room layouts. As 
shown in Figure 46, all rooms are of 4m height. Rooms A and B are narrow rectangular layouts with 
a size of 18×6m. Room C is L-shaped and room D is T-shaped, while room E is L-shaped in another 
direction. They are all of dimension 18×12m. The yellow rectangles represent the interior wall panels 
of the room; the red points are the indoor cells deployed. The blue traces are the potential UEs 
locations generated by the Billiard model [4.28]. Since we are dealing with heterogeneous UE 
distributions, which are directly caused by different room layouts, the billiard model can reflect the 
room layout information as much as possible, which is helpful in evaluating the RL performance. For 
the same reason, we maintain the positions of edge users that seem to penetrate the room’s interior 
walls. The user trajectories are sampled from these locations according to the number of steps in 
each episode. To increase the generalisation ability of the RL agent, at each step, we add random 
position offsets in initial 𝑥, 𝑦 locations respectively, which are sampled from Gaussian distributions 

with mean 𝜇 = 0 and variance 𝜎 = 0.5. The height of all UEs is fixed at 1m. 

4.4.4.2 Radio Simulation Setting 

The cells modelled in this study follow the 5G gNodeB architecture. According to engineering 
experience, we reasonably assume that 𝑀 = 2 cells and 𝑁 = 30 UEs are typical for one large room. 
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The five rooms are initialised for FRL to reduce the simulation complexity. For parameters related to 
Eqs. (25–26), 𝐵𝑚 is 20 MHz; 𝐺𝑚 and 𝐺𝑛 are 0 dBi; 𝑊𝑚 is constant. The initial transmission power 
is 24 dBm. The indoor path-loss model shown in equation (31) is used for ℓ, which comes from 3GPP 
TR 36.873 version 12.7.0 Release 12. 

 
(31) 

where 𝑓𝑐 is 3.5 GHz, and ℎuT = 1𝑚. It is to be noted that 3GPP updates the indoor propagation 

models in different releases, but the variation between such models is minor and has negligible 

influence on our RL training.  

For every cell, we assume 𝑃POT. = [19.5, 21.0, 22.5, 24.0] dBm, i.e., there are four power levels for 

each cell, thus the total number of power levels, for 2 cells, is 16 possible combinations. After 

excluding those combinations with the same interference proportion, the action-space size of the RL 

agent is 11. 

4.4.4.3 FRL Setting 

DQN and FedAvge are adopted as algorithms for the proposed FRL framework. 𝑄𝑘 and 𝑄ˆ𝑘 are deep 
neural networks (NN) with fully connected layers; hyperparameter details can be found in Table 6. 
The hyperparameters in this table are reasonable empirical values, based on our experience of 
running many simulations with varying values. The RL agents of the first four rooms (A–D) are used 
for the federated global model training, and room E is used for the validation of the FRLmodel. 

 

Figure 46 – (a)–(e) show different 3D layouts of rooms (room A–E). The yellow panels are the interior walls. The blue lines 
are possible UE locations generated by the billiard algorithm. Red dots indicate the locations of cells 

4.4.4.4 Baseline: exhaustive search 

To provide a reliable baseline for evaluation of the FRL method, we exhaustively search through all 

allowed power levels and then select the power setting which achieves the highest throughput. This 

is guaranteed to correctly maximize equation (27) and is feasible in our test scenarios because of 

the small problem size. 

4.4.5 Results 

4.4.5.1 Training of the Single RL Agent and FRL 

The reward during training RL agents in room A-D are illustrated in Figure 46,where each agent is 

trained independently five times, to evaluate the amount of variation in the training process. Each 

training phase lasts around 2000 episodes. It can be seen that, the single RL agent works well for 

the corresponding scenario. Although the convergence time varies, a stable reward gain can always 
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be observed. It is noticeable that the reward varies in each room; this is because of the heterogeneity 

of the UE distribution across different rooms. 

As discussed in the above section, we train an FRL global model using rooms A–D. The global model 
aggregation happens every 𝐸 = 380 cycles. The training curves of local clients (A–D) are 
demonstrated in Figure 47. It can be observed that the reward drops every 380 cycles; this is where 
the aggregations happen. The whole FRL training process ends with the convergence of each client. 

In the single RL validation stage, the trained model is frozen and deployed in the same environment 
as in the training stage. We calculate the cumulative throughput of the entire network based on the 
0.25 quantile and average data-rate of all episodes. The results of the random power allocation, RL 
model and exhaustive search method are shown in Table 7. The RL algorithms outperform both the 
random allocation and exhaustive search method in any environment, and the trained global model 
of FRL shows a similar performance compared with signal FL. Moreover, it is noticeable that the 
trained RL model shows great advantages in terms of inference time. When the UE locations change, 
the DQN only needs to make one forward inference to get the optimal transmit power setting, which 
is a capability that the greedy algorithm can’t match. 

 

Table 6 - Hyperparameters of Federated Reinforcement Learning 

 

Figure 47 - RL training reward in different rooms 
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Table 7 - The Cumulative Throughput Compare Based on 0.25 Quantile (𝑄1) and Average for All UEs (In Mbps) 

4.4.5.2 Adaption Test of FRL Global Model 

To validate the generalisation and adaptation ability of the FRL approach, the model trained in rooms 
A–D is tested in a new environment (room E). Two single RL agents are trained. One is trained from 
scratch; another one is trained from a FRL model pre-trained in room A–D. The comparison can be 
found in Figure 49. It is obvious that the adaptation of pre-trained FedAvg global shows significant 
advantages in training speed and final performance. The RL agent trained from the FedAvg model 
converges faster than all others. This reveals that the knowledge learned in the global model can 
guide the model training in a new environment. 

 

Figure 48 - The reward of agent trained in the FRL 
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Figure 49 - Room C’s RL model training from different pre-trained models 

4.4.6 Discussion 

We utilised FRL to solve indoor small cell transmission power control problem. The FRL framework 
ensures the privacy and security of UEs and can provide a template for model distribution, which fits 
the xApps model framework. Network operators may move towards intelligent networks with our 
proposed methods. For the RL-based controller, there are still some problems waiting to be explored. 
One of the problems is that when we increase the number of cells or add other optimization options, 
the action space will grow exponentially, which can lead to a large increase in training costs. Although 
some schemes such as action-space encoding and actor-critic structure can partially solve this 
problem, the effect is not satisfactory. On the other hand, we assume the path-loss models in the 
different indoor environments are the same, but, due to the multipath effect of indoor environments, 
such empirical models are not reliable, which results in the simulation-versus-reality issue needing 
to be addressed [4.30]. In the future, we will consider the joint optimisation of transmit power, physical 
resource block, loading balance etc.; all these optimisations will be unified in our proposed FRL 
approach. 

4.4.7 Conclusions 

This study discusses the issue of indoor cell transmit power control in the context of O-RAN, 

emphasizing the room dependent properties and lack of generalisation ability of a single RL model. 

Based on this, we propose an FRL framework. The client is in a single indoor environment and learns 

the best policy by RL. All clients will periodically upload model parameters and integrate them in the 

global model. The global model will act as the base model for learning in new environments. The 

simulation results demonstrate the feasibility and advantages of the proposed method, both in 

throughput and the learning efficiency. 

4.4.8 Outcome of the study 

This simulation work is accepted by IEEE 96th Vehicular Technology Conference (VTC2022-Fall) to 

be published as cited below, 

* Li, P., Erdol, H., Briggs, K., Wang, X., Piechocki, R.J., Ahmad, A., Inacio, R., Kapoor, S., Doufexi, 
A. and Parekh, A., 2022. “Transmit Power Control for Indoor Small Cells: A Method Based on 
Federated Reinforcement Learning”. In 2022 IEEE 96th Vehicular Technology Conference 
(VTC2022-Fall), 2022. 

4.5 Smart Interference Management 

Interference continues to be a key limiting factor in cellular radio access network (RAN) deployments. 
Effective, data-driven, self-adapting radio resource management (RRM) solutions are essential for 
tackling interference, and thus achieving the desired performance levels particularly at the cell edge. 
In future network architecture, RAN intelligent controller (RIC) running with near real-time 
applications, called xApps, is considered as a potential component to enable RRM. In this work, 
integer linear programming and reinforcement learning (RL) enabled sub-band masking xApp for 
effective radio resource management is proposed as a solution for smart interference management. 
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Here, we have developed a simplified model for testing algorithms. The model is a standard type 
used in this kind of work; it is mathematically a geometric random graph (GRG), and consists of a 
set of nodes representing cells, and edges between nodes which are geographically close together, 
representing potential interference. UEs are at cell centre as well as cell boundary in macro-cell 
based homogeneous networks. Here, the signal strength from serving cell tends to be very weak for 
cell-edge users as signals from neighbouring cell act as interferers. Therefore, the development of 
effective radio resource allocation procedures is essential to mitigate interference thus improve 
average throughput of the edge users whilst delivering a guaranteed QoS in next generation wireless 
networks. The developed algorithms were assessed on a range of networks graphs with number of 
base stations ranging from 10 to as a maximum of 100.  Our standard test problem used GRGs of 
sizes 10 to 30, but always of mean degree 4, and the target was to allocate 4 subbands out of 13, 
with the number of clashes minimized. The mathematical as well as RL approaches are exploited on 
the same environment. The developed xApp is scalable in both storage and computation. 

4.5.1 Interference Management using Mathematical Model  

We considered a downlink multi-cell OFDM network where each node 𝑖 has variables 𝑥[𝑖, : ] taking 

values 0 or 1. The second array axis is the number of available subbands. 𝑥[𝑖, 𝑗]  =  1 means that 

node 𝑖 is allocated subband 𝑗. Constraints such as 𝑠𝑢𝑚_𝑗 𝑥[𝑖, 𝑗]  =  𝑛 ensure that each node has the 
required number of subbands. One possible objective function is the total number of subband 
clashes; a clash is a case of 

𝑥[𝑖, 𝑗]  =  𝑥[𝑘, 𝑗] (32) 

where nodes 𝑖 and 𝑘 are neighbours. Minimizing an objective of this type, subject to the constraints, 
is integer linear programming (ILP), for which good exact algorithms are available, even though this 
is an NP-complete problem.  Problems with up to 50 nodes were solvable in reasonable time (less 
than about a minute). In each cell, a BS is in the centre of the cell while UEs are either at cell centre 
or cell edge. We have used ILP solutions to provide the exact solution as a benchmark for our 
heuristics, essentially to test how often they reach the true minimum.  The heuristics were of two 
types: (1) greedy, and (2) Q-learning. 

The greedy heuristic works as follows:  

1. Pick a node at random.  

2. If there are any subband clashes with neighbours, do the following: re-allocate the 4 
subbands in such a way as to minimize neighbour clashes. This can easily be done by 
choosing the 4 subbands which are least used by neighbours.  

3. Go to 1.  
This is thus a distributed heuristic, which makes repeated local optimizations with no knowledge of 
the value of the global objective function.  Nevertheless, it works extremely well, always finding the 
global optimum (although it doesn’t know that it has found it), typically in a few hundred steps, and 
taking something like 10-4 of the CPU time of ILP. Also show in Figure 50. 
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Figure 50 - Time complexity of ILP and Greedy heuristic techniques 

As there is no concept of a stopping condition in such a heuristic, in a real system we imagine it 
running forever. In such a way, even if it never finds the true optimum, it will nevertheless keep 
improving the objective. This greedy heuristic is thus setting the challenge which AI must beat, and 
it would not be surprising if AI failed to beat it.  If that is the case, we have shown that AI is not a 
good solution to this problem. 

4.5.2 Interference Management using Machine Learning 

The problem is posed as a cooperative multiagent control problem using reinforcement learning 
techniques. One popular RL technique in widespread use is Q-learning (QL). Here, a centralized 
array or look-up table known as the Q-table is maintained. The values in this table are called Q-
values, initialized to zero, allowing the agent to start to learn with an equal choice among all available 
actions. The Q-table, therefore, presents an analysis of the choice of behaviour of all the individual 
agents, whereas the Q-value represents the expected cumulative reward the agent receives by 
learning an action. 

 

In the presented scenario, each base station is a RL agent. During the learning phase, agents employ 
Є-greedy exploration-exploitation policy for action selection. An exploratory random action is picked 
with probability Є; otherwise, a set of good actions, that is, the number of sub-bands to be learnt per 
base station, is selected following a greedy policy with probability 1- Є. A set of greedy actions is 
selected from among the available actions using the equation 1. Thereafter, one action is randomly 
selected for the set of optimal actions learnt after greedy selection.  

action = [argmax(Q(action)),1]  (33) 

RL is goal-directed learning; therefore, depending on the consequences of the learnt action a reward 
is awarded to the learning agent in case of successful attempts, else it is punished. As learning agent 
follows temporal difference learning approach; therefore, the Q-value of each learnt action is 
recursively updated using the Q-learning update equation below: 

Qnew(s,a) = Qcurrent(s,a)+ α[r(s,a)+ γ max Q′(s′,a′) − Q(s,a)] (34) 

The RL enabled algorithm works as follows: 
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Step I: Distributed Q-learning relying on environment interactions alongside subband usage 
information from a subset of neighbouring nodes.  

1. Perform action selection using exploration and exploitation mechanism.    
2. The exploration rate decreases gradually from high exploration phase towards high 

exploitation. The exploration decay is constant and occurs at the end of each episode.   
3. Reward policy: punish if learnt resource is used by any neighbouring cell else reward.  
4. Update Q table for each learnt action per cell.  
5. Reduce the exploration rate and go to step 1.  
6. Termination condition for distributed learning - current exploration rate is less than minimum 

exploration rate.  
 

Step II: Learn Optimal Policy  

7. Policy learnt by each agent is fed into central controller. The central controller assists to 
remove short term fluctuations to stabilize the control process.  

8. The central controller assesses if each cell has learnt unique resource and policy learnt leads 
towards higher rewards in comparison to the previous policy learnt, thereafter, update Q 
table and set exploration rate to 1 for next episodes. 

9. Termination condition: number of radio resource clash is constant for the last 100 iterations.  

 

The aim is to learn a set of subbands per base station (4/13) such that the number of subband 
clashes in the environment are minimised that indicates to minimized interference. The results 
illustrated are gathered whilst training the model: (a) total number of subband clashes in the 
environment - all agents interact with the environment and learns unique solutions dynamically; thus, 
fluctuations in learnt solution are monitored; (b) optimal policy learnt by the model - the central entity 
accesses unique solutions learnt by each agent using distributed learning and local knowledge. 
Figure 51 demonstrates RL enabled RRM. 

Figure 52 demonstrates the time complexity of RL technique in the training phase. The simulation 
was performed on a range of cluster size, i.e., the number of base stations in each environment was 
different, however, the average number of neighbouring nodes was same. The results help us to 
understand the convergence time a RL model would take if the environment scaled. It also 
demonstrates a box plot for convergence time. On each box, median is indicated by the central mark 
while the bottom and top edges represent the 25th and 75th percentile respectively. The whiskers 
extend to the most extreme data point not considered as outliers. Outliers are shown by the ‘+’ 
symbol.  

The conclusion could be drawn that there is a gradual increase in convergence time using RL model. 
On contrary, ILP technique illustrates to be an effective solution for environment where cluster size 
is less than 25 however, else it demonstrates a steep increase in convergence time and proves to 
be an expensive solution. 
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Figure 51 - RL enabled optimal subband selection for interference mitigation in a cluster of 10 cells 

 

Figure 52 - RL mechanism optimal subband selection on a particular cell for Interference Management 
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Figure 53 - Time convergence for RL model: (top) the box plot presents the median time and outliers as the network scales; 
(bottom) time complexity plotted on log scale. 

4.5.3 Conclusion 

The obtained result assists us to understand reliability, robustness, and scalability of different 
approaches for link scheduling in wireless environment. ILP provides an exact solution and is quick 
for networks with a low number of nodes; however, as the network scales, the convergence time also 
scales.  The RL model has ability to update policy along with changes in environment, since it 
continuously interacts with the environment and updates the policy accordingly. Also, it is an 
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expensive approach if the goal is to achieve quick solutions as a significant number of iterations are 
required during the exploration phase to learn an optimal policy. However, once an optimal policy is 
learnt, the agent can make an intelligent action selection, thus maximizing the rewards. Nonetheless, 
the RL approach is expensive in time complexity for larger networks where the number of nodes is 
greater than 25. Moreover, improvement in CQI values per subband has been monitored with both 
approaches. 

4.6 Smart Mobility Management 

The term “Smart Mobility Management” also known as “Smart Handover” refers to more advanced 
heuristics that make use of network information such as user and cell location, cell load, physical 
resource blocks, UE mobility and/or radio signal strength information to perform handover [4.31]. 
Handover is defined as a process in which the ongoing transmission is transferred from the current 
base station (BS) to a target BS, depending on cell association policies [4.32]. 

The number of handovers per transmission is termed as handover frequency. Traditional 4G and 5G 
handover heuristics uses signal strength information, RSRP reports from UEs, for optimal base 
station association. In dynamic small cell, vehicular environments, a linear increase in handover 
frequency is monitored with an increase in the vehicle speed, if the maximum radio signal strength 
(max-RSRP) user association approach is considered. This may lead to significant increase in 
handovers as well as switching and signalling load resulting in undesirable network performance. 
Therefore, considering the dynamic environment or shift in user traffic pattern due to environmental 
phenomenon there appears a need to develop data-driven, proactive ways for smart handover or 
mobility management. Algorithms that are dynamic and adaptive to network changes with an 
objective is to spread the load more evenly across the network while ensuring that user service levels 
are not compromised. In the following sections, mobility management using mathematical as well as 
machine learning enabled are discussed. 

4.6.1 Mobility Management using Mathematical Model  

A mobility model is one of the key determinants in the provision of accurate simulation. The role of 
mobility model is to mimic the movement behaviour of users, and thus UE location, in the network 
through the inclusion of critical movement factors such as direction, speed and destination, therefore 
correct design and selection of a mobility model is essential to evaluate the impact of developed 
protocols on network characteristics, and to analyse the network behaviour under a proposed 
protocol. A range of mobility models with different characteristics have been explored in simulation-
supported research [4.33]. Amongst all, random walk model with reflection mobility model - a 
variation of random walk mobility model has been used to demonstrate mobility management. Here, 
a mobile node is initially placed in a random location in the simulation area, and then moved in a 
randomly chosen direction between [0,2π] at speed between [speedmin, speedmax]. As soon as 
mobile node reaches any edge of the simulation area, the node changes its angle of movement to 
(α + π/2) while the speed remains constant [4.33]. This mobility model imitates real life mobile nodes 
as they are more likely to reflect their direction of movement when meeting with an obstacle. 

 

Figure 54 - Random Walk with reflection mobility model [4.33] 
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Further, mobility management entity which enables a handover based on maximum signal strength 
technique has been employed. Nonetheless, if the cells are not equidistant, then excessively frequent 
handovers may result (ping-ponging) [4.32]. The key objective of the work performed is to understand 
and monitor if application of reinforcement learning approach will lead to a similar or better handover 
performance compared to pure heuristic.  Simulation results demonstrate that handover performance 
monitored using RL techniques is not only at par with its counterpart but also can lead to an improved 
minimum throughput. 

4.6.2 Mobility Management using Machine Learning 

The presented work considers a scenario containing 7 cells and 20 UEs. This has been designed to 
be large enough to be challenging, but small enough to run fast in the simulator. The cells are in a 
hexagonal arrangement, and the UEs follow approximately circular paths, designed to cross cell 
boundaries frequently to speed up the learning process as shown in Figure 55. The UEs move at 
different speeds. 50% of the UE traverse in opposite direction but follows the same circular trajectory. 

 

Figure 55 - Smart handover scenario with 7 Cells and 20 Users 

Furthermore, Q-learning algorithm runs on the AIMM simulator. To use Q-learning requires pre-
defining a set of states and a set of actions.  It is always necessary to keep the number of states and 
the number of actions as small as possible, otherwise the learning process is too slow. We report 
here on an experimental heuristic which could be described as “Q-learning-assisted”, rather than 
being pure Q-learning. It is built as follows.  
 
An algorithm in the RIC detects cell-edge situations by monitoring RSRP reports sent to cells. A cell-
edge situation is triggered by two RSRP reports being within a threshold of each other (typically 6dB), 
and both being above some specified minimum (typically -120dBm). Upon trigger, a state (i,j) is set, 
meaning that the UE current in cell i is on the boundary of cell j. The Q-learning agent is now 
triggered, causing it to consider whether a handover between cells i and j is to be made. After this 
decision, the reward is set to the difference in downlink throughput (that is, after handover, minus 
before handover).  This reward is boosted by a factor of 10 if the cell i RSRP has been trending 
down, and cell j RSRP has been trending up. This automatically reduces the chance of ping-ponging. 
The proposed method also automatically performs load-balancing since any handover to a heavily 
loaded cell will give a low reward. 

The Q-learner has the task of determining whether this action is beneficial or not. To get good 
performance, it is preferable to start the system “hot”, and cool it gradually, that is, if the “raw” 
probability of choosing action j when in state i is Qij, then we use exp(βQij), in which β is a parameter 
(the inverse temperature) which starts at 0 and increases over time. This makes the distribution flat 
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at the start, and equivalent to “pick the biggest” after long times. Thus, after sufficiently long times, 
the system stops learning and behaviour becomes deterministic. The rate of this cooling process can 
be tuned by adjusting β.  
 
Typical results are shown in Figure 56. Until time 10000, no handover at all is used, to demonstrate 
the very poor throughputs. Between times 10000 and 30000, a standard 4G MME algorithm is 
used.  After time 30000, the MME is switched off and Q-learning takes over. We see on the top graph 
that throughput at least as good as the MME algorithm is achieved after about time 60000. The dark 
blue is the instantaneous throughput; the light blue is a smoothed value.  The green curve shows the 
number of UEs attached to cell [1] (other cells are very similar) and demonstrates that the load never 
exceeds 5. The red curve shows the serving cell for UE [0]; it is only occasionally 0 (the cell in the 
centre of the hexagonal arrangement), which is as expected as the UE path stays away from cell 
[0]. These are very promising results, and future developments will look at making the heuristic yet 
smarter by using more explicitly the cell-load information along with the subband allocation technique 
that was developed and presented in the last deliverable. Attempts have also been made to find 
promising use case to include soft re-use (power reduction rather than complete switching off a 
subband). 
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Figure 56 - Results from handover experiments 

4.6.3 Conclusion 

The deep RL approach has been proven to solve sophisticated problems even in partially observable 
environments. Since communication channels dynamically change over time, it is nearly impossible 
to formulate every communication channel between UEs and Radio Units (RU). Therefore, heuristic 
methods are being used to find near optimal solutions such as deep RL. While deep RL can provide 
such comprehensive solutions, its computational cost can be high. Especially when it is applied on 
a larger scale instead of single RU and connected UEs. Accumulated computation cost will be higher 
than desired. Beside the computational cost, it will be not feasible to train a RL model for each RU 
or DU individually. This is because each RU has unique environment and may need to be trained for 
its own environment. 

4.7 Beam Selection 

4.7.1 Introduction 

There are several ways that Massive MIMO networks can address the issues of limited radio 
resources to meet user demands for service [4.34]. When located within a dense urban environment, 
for example, the multipath propagation within the environment tend to cause variations in the angles 
of arrival, signal strength and phase angles across the array. These variations, combined with 
appropriated precoding and detection schemes, allow for the use of aggressive spatial multiplexing, 
where multiple communications channels can share frequency and bandwidth resources at the same 
time. The large number of antenna elements also allow for the directing of energy toward much 
narrower regions compared with what is possible with smaller arrays. This beamforming is achieved 
by varying the antenna weights, that is the amplitude and phase angles, across the elements of the 
array. 

The use of ML for the management and optimisation of programme parameters within Massive MIMO 
algorithms  is currently an active area of research, and the interest has only increased thanks to 
growing use and investigations of disaggregated and Open Radio Access Network (O-RAN) 
systems, which provide for increased network softwarisation and the deployment of ML applications 
in near-real time and real time contexts and easier implementation through the use of dedicated ML 
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components within the O-RAN standards for example the near real time RAN Intelligent Controller 
(RIC) and the non-real-time RIC [4.35].  

There is the option to deploy Massive MIMO systems within a variety of contexts that each have 
different criteria for optimal performance aligning with the related 3GPP standards. This section 
focusses specifically on the questions of coverage as it relates to the synchronisation process within 
the 5G standards. This process is discussed in more detail in the following section and is dependent 
upon how beamforming is configured at the BS. 

The application of ML to the optimisation of beamforming parameters within Massive MIMO has been 
approached in several different ways. For example, Wang et al [4.36] propose a low-complexity, sub-
optimal beam allocation algorithm based on fixed beams formed using the Butler method [4.37]. This 
is a combinatorial optimisation problem, but with the constraint that each beam serves only one user 
and where the aim is to maximise the sum data rate of the system. 

Shafin et al [4.38] take a different approach to applying ML to beam optimisation, by making the 
beamwidth and angles of the beams the parameters to be optimised. In other words, a set of beam 
weights are determined, again by formulating an optimisation problem. This paper aims to maximise 
the Signal to interference plus noise ratio (SINR) at the user by determining the most appropriate 
beam parameters. 

This section describes an approach for beam selection that is based upon optimising the coverage 
during the synchronisation process for a set of users for whom the spatial distribution is known. The 
approach involves the adjustment of the beamforming parameters by choosing beams from a defined 
set according to a defined criterion. 

4.7.2 Beamforming in Massive MIMO 

Synchronisation with the RAN, whilst important in previous generations of mobile networks, is 
especially important within 5G, owing to the time-critical nature of many of the technologies within 
such networks and the increased number of devices operating with these requirements. For example, 
TDD technology requires both the BS and the UEs to transmit using the same bandwidth resources, 
thus making the timing critical at both ends of the link to avoid interference [4.39]. Likewise, the use 
of multiple beams within Massive MIMO technology that are dynamic and not covering the same 
area, with the same boundaries at the same time, necessitate the use of correct timing at both the 
UE and the BS end of the link. The synchronisation process is a method within the 5G standards, 
preceding the transfer of data, that allows the UEs to establish the timing necessary to connect to 
the network [4.40]. 

The synchronisation process allows the UE to detect the time at which a radio frame begins and the 
time at which an OFDM symbol begins, a process that is achieved by the transmission of a 
Synchronisation Signal Block (SS Block). This forms part of the process of downlink synchronisation. 
Uplink synchronisation is the process that allows the UE to obtain timing data for when it should send 
uplink data. This uplink synchronisation forms part of the random-access channel (RACH) process. 
However, downlink synchronisation remains the focus of this paper because of the relatively 
cohesive way in which it can be mapped onto the process of beamforming described in the 
introduction. 

The downlink synchronisation process consists of the BS sending several synchronisation signal 
(SS) bursts, each consisting of a block of data separated by defined timing intervals. The number of 
SS bursts is currently defined as not being permitted to exceed certain numbers depending on the 
frequencies being used, with 4 below 3GHz, 8 up to 6GHz and 64 above that. The use of 8 blocks is 
considered here, as mid-3GHz is typical for 5G BSs; however, it would not be complicated to adapt 
this to lower numbers of blocks or to different frequency ranges if necessary. 

The separation of the SS bursts in 5G are defined in terms of orthogonal frequency-division 
multiplexing (OFDM) symbols, and each SS Burst is a mapping across four symbols, each of which 
are mapped across 240 subcarriers, although not all these subcarriers are used for the transfer of 
information. The first symbol contains the Primary Synchronisation Signal (PSS), the second and 
fourth contain the Physical Broadcast Channel (PBCH) and the third contains both the PBCH and 
the Secondary Synchronisation Signal (SSS). 

Each of the SS bursts may be transmitted while the antenna array at the BS is configured to form 
the beam according to a pre-determined specification. The effect of this is that, during the 
synchronisation process, the beam can be made to sweep across a geographic region. The UEs, as 
part of the process, report back to the BS the reference signal received power (RSRP) values as an 
indication of signal quality within the RACH preamble. This allows for a beam to be identified as 
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providing the highest quality link between the BS and the UE. This information, with the process 
initiated during synchronisation, forms part of the overall beam management framework for 5G 
communications. Once the beam has been established as best serving a certain set of UEs, the 
beam refinement process, where beams can be made narrower and more specifically directed, can 
begin to allow for further data transfer. However, beam refinement is beyond the scope of this 
research. 

This section now focusses on synchronisation and beam selection from the perspective of coverage. 
In other words, how can the beams associated with the SS Blocks be best configured to provide the 
best coverage from the perspective of a BS for a given distribution of users and environment. It is 
possible to ask this question because the characteristics of the beams (in terms of width, azimuth, 
elevation, and electrical tilt) are not defined and there may therefore be some discretion for the 
operator to define these, subject to operation considerations. 

The method for addressing this problem is discussed further in later sections, however the following 
assumptions are used as the foundation to this research: 

1. The best set of beams for a given BS, operating within an environment and with a defined 
user distribution, is the one that provides the most even coverage to the users. In other 
words, each beam serves an equal number of users. 

2. A single beam can serve multiple users. 

3. There is no maximum number of users that can be served by a BS. This assumption is not 
realistic but is reasonable for the studies here as only typical numbers and distributions of 
users are considered. 

Use is made of a MATLAB simulation from the 5G toolbox as the basis for obtaining the RSRP values 
from users. 5G synchronisation allows for beamforming at both ends of the link, however only 
beamforming at the BS is considered here. The frequency for the simulation is 3.5GHz, and thus, 
following the standards, eight synchronisation signal blocks are transmitted, each with an associated 
beam from the beam set. A user distribution is first defined around a central point with users 
distributed between 100 and 1000 metres. The area for sweeping is limited to within a typical tri-
sectored region, not accounting for the edges of the beams and the sidelobes. The full waveform 
and grid for the synchronisation signal bursts is generated and transmitted through a channel. Initially 
a Rayleigh fading channel. The RSRP values are then reported back from the UEs, with the highest 
RSRP value corresponding to the selected beams. 

The process of simulating the propagation of the waveform through the channel is computationally 
slow and overly complex for investigating synchronisation coverage. Therefore, a more simplified 
model is used that greatly increases the speed of the simulations. 

4.7.3 Overview 

In general terms, the aims of the studies described in this section are, firstly, to investigate the 
application of Machine Learning to the process of broadcast beam selection within 5G. The second 
aim is to investigate how the use of user location data, obtained by processing data available to BT 
as a Mobile Network Operator, could be used to inform the beam selection process and whether 
such data could assist in the design or implementation of Machine Learning systems used in such a 
context.  

Much of the research in AI for beam selection in 5G is concerned with either the creation of the beam 
patterns themselves, or with how different parameters (SINR, for example) can be used to learn 
which beams should be selected from a set of available beams. However, the investigations 
described here take a different approach, where sets of different antenna weights (with each weight 
representing a potential broadcast beam) are compared in terms of their ability to serve a set of 
users. The reason for taking this approach is because of the interest in using beam selection 
optimisation to maximise coverage within a cell area, whilst reducing the presence of beams that 
may not be serving many users in comparison with other beams. It is assumed that an optimal 
selection of beam weight would be the ones that generate a set of beams that serve an equal number 
of users each. 

It should be noted that, in this section, a beam refers to a pattern that is generated by applying 
weights to an antenna array, while a ‘set of beam patterns’ refers to a class of beams. The aim of 
this use case, as interpreted here, is to identify a set of beam patterns for use within a type of 
environment, not to determine the individual beam patterns themselves. 
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So far, the work on this use case has used simulations of random users placed around a base station. 
Several typical beam sweeping patterns have been selected, which are discussed in more detail in 
the next section, and the 5G synchronisation signal simulated through a channel. As part of the 
synchronisation process, the RSRP values are obtained from the UEs with, by default, the beam with 
the maximum value being selected as the one associated with the user. This information is then used 
to select the beams for the transfer of data, but this step is not currently being considered as part of 
this use case, which has an emphasis more on the coverage of the broadcast beams. This simulation 
process is repeated for each set of antenna weights, providing a selected beam for each set.  

The results from the simulation are formatted to create training data for supervised learning in the 
form of feature vectors. The aim of such supervised learning is to attempt to use Machine Learning 
to determine which set of beam patterns are the best given a certain type of environment. The reason 
why it will be possible to make this determination about a certain type of environment is that the 
random user data will be replaced by realistic location data obtained from the network. The location 
data represents different forms of user distributions (e.g., for urban and rural environments) and can 
thus be used to make determinations about suitable beam patterns. The purpose of investigating 
supervised learning methods is to determine the feasibility of simplifying the process of selecting sets 
of beam patterns, since making the choice through simulation can be computationally expensive and 
time consuming.  

This summary of research begins with an overview of the simulation process. The simulation process, 
including the running of propagation models, is time consuming in its current form. Therefore, a 
discussion is presented of some of the compromises that are required to run the simulations in a time 
effective manner. A method of providing approximate RSRP measurements simply to illustrate the 
process of applying Machine Learning to beam selection is discussed. This is followed by an 
explanation of the generated feature vectors and their categorisation using standard Machine 
Learning methods. An explanation of available location data is then presented along with a basic 
example of the application of this data. The next section then introduces ideas for how such data 
may be applied in real-time as the research progresses. The conclusion discusses some of the 
limitations of the simulation framework presented so far and highlights areas of importance to 
address within the next stages. 

4.7.4 Explanation of Simulation 

This section presents an overview of the simulation and its limitations. The MATLAB 5G simulation 
toolbox combined with the phased array antenna toolbox has been used to generate hypothetical 
(but realistic) beam pattern sets. Then, for each individual beam within the beam set, an RSRP value 
is obtained for each user, the combination of which are used to determine the selected beam from 
within the set. The data of selected beams associated with each set can then be used to determine 
the selected beam set for a certain configuration of users and an environment. Note that an 
environment is described partly through user distribution and partly in relation to the propagation 
environment. The general process of simulation and beam selection is described here, followed by 
an amended selection process to account for the limitations related to the time it takes to run the 
simulation on available computer equipment.  

A user distribution is first defined in polar coordinates, with each UE represented by a point in a 2D 
plane. The simulation can run in 3D, but for the moment only two dimensions are considered to 
simplify the process. The user distribution is initially random, to be update later with more realistic 
distributions. The simulation parameters are then set with standard physical propagation settings for 
free space. An 8x8 linear array is selected for the simulation, a typical configuration of Massive MIMO 
antennas. The elements are modelled as isotropic antennas, again initially to simplify the process. 
The base station array is placed at the centre of the study area (i.e., at theta and phi equal to zero).  

The frequency for the simulation is 3.5GHz, and thus, following the standards, eight synchronisation 
signal blocks are transmitted, each with an associated beam from the beam set.  

The waveform and grid for the transmitted synchronisation burst are then generated. These bursts 
are associate with beams, obtained from antenna weights associated with beam sweeping vectors. 
The vectors provide discreet points around a circle such that the energy points at a specific direction 
over a range of angles, changing for each burst. The azimuth sweep is set for a sweep of 120 
degrees, which would be typical for a tri-sectored base station, although some of the beam sets are 
set to sweep over a much narrower range of angles. The actual beam angles are set according to a 
dictionary, initially of five sets of angles, the first three of which begin and then narrow the 120-degree 
sweep. The fourth set includes angles at the extreme ends of the sweep and the fifth in the centre.  
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A standard Rayleigh channel model based upon a gaussian fading channel is used for the channel 
model through which the bursts are transmitted. The process for obtaining the RSRP values for each 
user is then followed. This whole process is repeated for each user and then for each beam set, with 
the data recorded in each case. For each set, the chosen beam is simply the beam corresponding 
to the highest RSRP value, with the chosen beam stored in a matrix with the rows representing each 
user, and five columns representing each beam set. The beam pattern set is then selected by 
analysing the distribution of beams. In other words, for each set of selected beams, take the beam 
with the minimum number of users, and subtract this value from the beam with the maximum number 
of users. The set with the minimum value then represents the set with the most even distribution of 
users and thus, from the initial assumption about the preferable beam set, this set is selected. 

4.7.5 RSRP Curves 

The use of simplified propagation models is justified both in addressing the issue of complex 5G 
channel models and in allowing for a clearer formal description of the problem being investigated, a 
description that is presented in the next section. However, when implementing such a system in an 
actual network it is likely to be necessary to use a more sophisticated channel model, since a 
Rayleigh model may not occur often in environments which may be encountered in a practical 
network. Many 5G channel models are statistical in nature and the following process results in 
models that are essentially look-up tables. However, it could be argued that the large number of 
users being considered, and the level of granularity make a determined average value at each point 
within the model acceptable. The level of granularity is related to the dimensions of the environment, 
and in this case all the environments being considered are outdoors and based on macro-cells with 
beams that are wide enough to cover several UEs at a time. Thus, less precision is required 
compared with indoor environments or in situations where beams are narrow enough to serve 
individual UEs within dense user environments. 

 

Figure 57 - User distributions around BS at centre of graph. The blue circles represent the location where the RSRP value 
is determined. The concentric circles represent the distance from the BS in metres. 

The aim of this approach is to create an RSRP surface that can represent a typically expected RSRP 
value for each of the possible beams. The users are placed evenly around a BS as shown in Figure 
57. Only a third of the total area is occupied with users to simulate a typical tri-sector BS configuration. 
The range for these examples is set out to 1km, although another value could have been chosen. 
Additionally, an area near to the BS is excluded to avoid near-field effects and complications with 
overlapping beams. An assumption of this model is that there are no users within the exclusion zone. 
The waveform model for 5G is then run for each of the beams. On each occasion each user reports 
back its measured RSRP value for the beam. These reported RSRP values at specific points, 
correspond to points within a two-dimensional RSRP surface (Figure 58). This surface is then 
extended to cover the entire area of interest from the point of view of the propagation environment. 
The RSRP surface is also referred to as a ‘propagation grid’ when used in the context of the matrix 
containing the RSRP values for each beam. 
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Figure 58 - Example of a generated ‘normalised RSRP surface’ for one beam from the described methods. Each beam will 
have its own surface, which can be considered as almost synonymous with the beam. 

The main outputs from the simulation are: 

• The RSRP measurements for the combination of receive and transmit beams, presented 
as an MxN matrix (with M and N being the number of BS and UE beams). The maximum 
value in the matrix corresponds to the chosen beam. 

• The selected beam IDs (in the range 1…M and 1…N) of the selected beams. 

• The BS array weightings, as a vector with a number of elements corresponding to the 
number of antenna elements. 

4.7.6 Feature Vectors 

It is possible, once the beam sets have been selected, to create feature vectors for categorisation. 
The idea here is to have sets of user positions that vary from one to another, but which represent a 
typical type of environment, for example a busy shopping location at a certain time of day. There are 
several possibilities for the format of the vectors, but the format that is the most convenient is a format 
that contains the number of the chosen beam set and the coordinates of the users within the study 
area. It may be possible to reduce these vectors further by clustering the users when real data is 
considered, as discussed later. Formatting the data into feature vectors allows for the testing of 
supervised learning algorithms to find boundary lines between the vectors, so that it is more 
immediately apparent which areas correspond to which beam sets. 

4.7.7 Use of Real Data 

It is possible to run the simulations described using something that resembles more a realistic user 
distribution and environment in a limited sense without much further modification. The coverage 
maps, location data and base station information available at BT provides information regarding 
broad angles of departure from the base station and the general direction for where users would be 
clustered. Heat map data is also available to refine further the knowledge regarding user clusters. 
Given this, it is possible to set up a distribution of users by sectorising the plot, with more users 
generated within the areas of a high concentration of users than elsewhere.  

However, in future work, it would be possible to be more precise about user locations by extracting 
data from the heat maps and using this as the input to the simulation, rather than just obtaining a 
general impression from the visual data. This would also allow for a greater number of simulations 
to be run, as it would be easier to automate the process, thus creating a much larger data set for 
testing.  
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4.7.8 Real-time Implementations  

Within 5G networks, beams are selected, both for synchronisation and for data transfer, by the 
obtained reports from the UEs during synchronisation and beam refinement. It may be possible to 
implement Machine Learning to analyze the results of these processes and propose modification of 
the beam set based on the results. There are potential benefits from this, in that, if it has already 
been possible to learn the optimal beam set for the environment, it may, at least in principle, be 
possible to skip some of the stages within beam selection.  

4.7.9 Scope  

The aim of this section is to discuss some possibilities for approaching the beam optimisation 
problem as part of this research. It also summarises the data requirements for the project, provides 
a description of the problem to be solved, and describes some of the resources available and their 
functionality. 

It has been necessary to determine whether a specific method for beam allocation is to be assumed. 
There are various possibilities when it comes to investigating this area of research such as looking 
at traffic patterns, applying existing ML methods or attempting to learn an optimal grid of beams. 

Much of the research in applying ML to Massive MIMO beamforming is concerned with using ML to 
learn the required beam based on some parameter (such as SINR or receive power). These methods 
assume a specific ‘grid of beams’ that cover the cell, with the aim being to pick out the beam selected 
during the synchronisation process. 

A second area of interest is to use ML to determine the best parameters of the beams themselves 
(beamwidth, tilts, elevation, and azimuth). 

These two areas of interest could be linked in the sense that several pre-defined grids could be 
considered, some with narrow and some with wide beams, for example. Then, the ML method is 
applied with different grids, the results of which are combined and processed to somehow determine 
which general beam configuration should be used. It may be, for example, that a configuration 
consisting of several narrow beams in one direction with wider beams in another direction could be 
optimal in many urban environments, for example when a shopping in centre is in a certain direction 
relative to the BS. It would be necessary to have a way to represent numerically how good a certain 
configuration would be, perhaps related to the number of unused beams within a configuration. 

Advantages of using a ML approach include the reduction of time and costs in the case of running 
physical experiments and the possible reduction of complexity compared with running deterministic 
simulations. 

The aim of this project is to make use of realistic data regarding the distribution of mobile users. 

4.7.10 Prior Work  

4.7.10.1 Problem Statement 1 

Junyuan Wang et al [4.41] have formalised a beam selection problem that can be applied to ML in a 
way that focusses on learning selected beams from a ‘grid of beams’ (i.e., a collection of beams 
covering an entire cell) based on some chosen parameter. 

The assumptions of the problem statement described by the authors are that the users are all 
equipped with a single antenna and are uniformly distributed within a circular cell area. The array is 
linear with isotropic elements and half wavelength spacing with a collection of beams formed by the 
Butler method. 

𝐴𝑛(𝜃) =
sin (0.5𝑁𝜋𝑐𝑜𝑠𝜃 − 𝛽𝑛)

𝑁𝑠𝑖𝑛(0.5𝜋𝑐𝑜𝑠𝜃 −
1
𝑁𝛽𝑛)

 (35) 

Where: 

𝛽𝑛 = (−
𝑁 + 1

2
+ 𝑛)𝜋. (36) 

Here N is the number of beams, 𝜃 is the AoD, and n is the integer index of the beam. The users are 
distributed around the linear array and served by the beams as shown in Figure 59. 
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Figure 59 - Distribution of users around the linear array with example beam patterns 

The receive power is determined for each user k according to a standard path loss model 

𝑃𝑘 = ∑1𝑘,𝑛𝑝𝑛𝐷𝑛(𝜃𝑘)𝜌𝑘
−𝛼

𝑁

𝑛=1

 (37) 

Here 1𝑘,𝑛 is an indicator function indicating the chosen beam (i.e., 1 where beam n is selected for 

user k and 0 otherwise), 𝑝𝑛 is the allocated beam transmit power, 𝐷𝑛(𝜃𝑘) is the relative directivity of 
beam n, 𝜌𝑘 is the distance from the cell centre to user k and 𝛼 is the path loss exponent. A further 
assumption of the model is that each beam can serve at most one user and that the total transmit 
power is fixed, with the power allocated to each beam being given by 

𝑝𝑛 =

{
 

 
𝑃𝑡
𝑁𝑠
, 𝑖𝑓∑ 1𝑘,𝑛

𝐾

𝑘=1
= 1

0, 𝑖𝑓∑ 1𝑘,𝑛
𝐾

𝑘=1
= 0

 (38) 

where 𝑁𝑠 is the total number of allocated beams. The assumed achievable data rate is 

𝑅𝑘 = 𝑙𝑜𝑔2 (1 +
𝑃𝑘

𝜎0
2 + 𝐼𝑘

) (39) 

Here 𝜎0
2 is the variance of the noise and 𝐼𝑘 is the inter-beam interference 

𝐼𝑘 = ∑ ∑1𝑗,𝑛𝑝𝑛𝐷𝑛(𝜃𝑘)𝑝𝑘
−𝛼

𝑁

𝑛=1

𝐾

𝑗=1,𝑗≠𝑘

 (40) 

The aim is then to find 

max
{1𝑘,𝑛}∀𝑘,∀𝑛

∑𝑅𝑘

𝐾

𝑘=1

 (41) 

This problem is slow to solve directly and forms the basis of some research in ML and MIMO beam 
selection, as discussed later. 

4.7.10.2 Problem Statement 2 

The second problem statement approaches the problem differently, by making the azimuth and 
elevation beam widths (in addition to the electrical tilt setting) the parameters to be learned through 
ML techniques. This effectively means that the beams themselves and the configuration of the grid 
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of beams covering the cell are learned, not which beams within the grid are activated and for which 
users. 

Shafin et al. [4.38] formulate this approach to beam optimisation by considering a problem of 
determining a weight vector (which is applied at the BS array to define how the beam is steered 
towards individual users). The authors consider the received signal vector for each user k (where the 
notation m refers to the sector and M) as 

Problem Statement 2: 

The second problem statement approaches the problem differently, by making the azimuth and 
elevation beam widths (in addition to the electrical tilt setting) the parameters to be learned through 
ML techniques. This effectively means that the beams themselves and the configuration of the grid 
of beams covering the cell are learned, not which beams within the grid are activated and for which 
users. 

Shafin et al. [4.38] formulate this approach to beam optimisation by considering a problem of 
determining a weight vector (which is applied at the BS array to define how the beam is steered 
towards individual users). The authors consider the received signal vector for each user k (where the 
notation m refers to the sector and M) as 

𝑦𝑘 = 𝒉𝑚,𝑘
𝑇 𝒇𝑚𝑠𝑚 + ∑ 𝒉𝑚′,𝑘

𝑇

𝑀

𝑚′=1
𝑚′≠𝑚

𝒇𝑚′𝑠𝑚′ + 𝑧𝒌 (42) 

Here 𝒉𝑚,𝑘 is the channel vector between the mth sector and the kth user, 𝑠𝑚 is the transmitted signal 

and 𝒇𝑚 is the precoding vector applied to the mth sector. The final term relates to the noise. The aim 
is to learn the optimal beam pattern for each sector. The interference between sectors must also be 
considered as part of the selection process. 

There is, for each BS with its sectors, a predefined class of J possible weighting vectors for the 
antenna array 

𝐽: {𝒋1, 𝒋2, … , 𝒋𝐽} (43) 

Here each of the weightings corresponds to a beam pattern with a specified azimuth, elevation, and 
tilt. The chosen weight corresponds to the sector’s precoding vector f. The weight vector is chosen 
based on the distribution of users. 

The choice of weight vector is made based on the following process (noting that the aim of any ML 
scheme related to this general approach is to learn the weight vectors that result from the described 
process): firstly, the SINR rate for each user is determined for each of the available beam 
configurations. A threshold SINR value is selected that will be used as the baseline for determining 
if a user can be said to be connected to the BS or not. The aim is then to compute the set of beams 
for each sector that maximise the total number of connected users, i.e. 

max
𝒇1,𝒇2,…,𝒇𝑀

∑1𝑆𝐼𝑁𝑅𝑘>𝑇

𝐾

𝑘=1

 (44) 

Here T is the threshold SINR level and ‘1’ is the indicator function. In other words, this is the total 
number of connected users that occurs for some set of beam configurations, with one beam pattern 
associated to each sector. Finding this set of beams is made more complicated by the fact that there 
will likely be inter-sector interference, a factor that could affect the number of connected users that 
is achievable. 

It should be noted that the criteria for beam selection is very different compared with the first 
formulation, because here the aim is to obtain a beam that will serve the largest possible class of 
users, but in the first formulation each beam served only one user. 

This formulation of the problem would seem to be closer to what is described in the Autonomous 
Industrial Mobile Manipulators (AIMM) use cases’ specification; however, it may be that this 
formulation of the problem could be combined with the first formulation. This could work by 
determining which grid of beam configurations are available to the networks, simulating the channel 
with user distributions, and then attempting to learn the beams selected through available 
parameters, repeating this process for each of the possible grid of beams configurations. It would 
then be necessary to determine which grid should be chosen according to some parameter. Perhaps, 
for example, the chosen grid would be the one with the fewest number of unused beams. 
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Determining the grid in this way could help in providing an optimal grid for different environments, as 
described in the introduction. 

4.7.11 Recent Research 

There seem to be fewer research outputs related directly to the topic of using ML for SS Block 
Broadcast Beam optimisation compared with other areas of MIMO research. Much of the relevant 
literature is from conference proceedings and often assumes the use of mmWave frequencies. There 
may be opportunities to investigate some of these methods but in the context of frequencies more 
relevant to the mobile Radio Access Network, as well as to use real data, such as those provided by 
the ‘average number of connected users’ metric, to provide more realistic data for the development 
of ML algorithms.  

The emphasis of this work is not to attempt to learn which beams are selected because of the 
synchronisation process from a specified grid of beams. Rather it will be to identify the best beam 
patterns to use from a set of defined possibilities. This involves identifying a figure of merit to 
determine which beam pattern should be used. The initial tasks are as follows: 

• Identify a selection of beam patterns. The first options will likely be patterns formed from 
different numbers of active antenna elements, which will correspond to beams of different 
widths and different total number of main lobes within the beam patterns. The next options 
could be to rotate the selected beam patterns in various directions. Depending on the metric 
chosen to identify the favoured beam pattern, it may be possible to infer when a certain 
azimuth range can be excluded. 

• Obtain and pre-process location data of users from the mobile network. These data will be 
in two dimensions at first, only in the azimuth plane, which is more relevant in situations 
without high rise buildings. It will be necessary to consider exactly what form these data will 
take and whether they will include information about buildings within the data or whether the 
position of the users is presented in terms of radio distance, rather than physical location. 

• Modify code so that it can run the simulations with the output required. Determine whether 
the RSRP measurements and antenna weights or necessary, or whether only the selected 
beams are necessary. 

Run the simulation and obtain results. 

4.7.12 Mathematical Description 

The generation of the normalised RSRP surfaces allows for the problem to be expressed more 
precisely as a combinatorial optimisation problem. This formulation is developed with attention 
specifically to assumption 1 in the opening section, that is to provide even coverage of broadcast 
synchronisation beams for a given user distribution and environment. 

Within a region covered by a base station (i.e. a gNodeB) 𝑚 user locations (each defined with (𝑥,𝑦) 
coordinates). It is assumed that a sector is known that corresponds to the coverage area. 

The matrix 𝑿 is 𝑛 × 𝑚 where 𝑛 refers to the number of possible beams (each with their computed 
normalised RSRP curves). The quantity 𝑛 is determined simply by the beams that are being 
considered, which could be the number of possible beams given the hardware constraints or those 
that could possibly be permissible given operation considerations. It may also be defined by the 
requirements of a specific type of study. For example, if it was necessary to test different types of 
beam configurations, one might choose a set of beams of one type and a set of beams of a different 
type, with each set being the same size. The 𝑚 columns of 𝑿 refer to the RSRP values at the user 
locations. 

The 𝑟 × 𝑚 matrix 𝒀 is made up of r rows from 𝑿, where 𝑟 is the maximum number of allowed beams 

(often eight in our examples and 𝑟 < 𝑚 ), define 𝑣𝑗 as the position of the maximum value in column j, 

that is the row of 𝒀 that contains the maximum value. 

Define 𝑧𝑑 as the number of times that 𝑑 appears in 𝑣 where d=1,…,r. Then find the 𝑟 rows of 𝑿 forming 

the matrix 𝒀 that minimise the difference between the maximum number contained within z and the 
minimum number. 

max(𝑧) − min (𝑧) 

 
(45) 
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This difference is referred to as the ‘beam distribution.’ The beams that are selected to form the rows 
in 𝒀 provide for the most even coverage amongst the user distribution, as described earlier. Intuitively 
one is presented with a matrix where the rows correspond to the beams and the columns to the 
RSRP values of specific users. A vector is then created to show the list of beams that provide the 
best coverage for each user, and the aim is to find the set of beams for which each beam appears in 
the list with the same frequency as the others. 

4.7.13 Available Data  

Data Requirements 

Location data for the mobile users are a requirement for this research. These could be entirely 
empirical in nature or a combination of empirical and a statistical data. Data that are generated 
entirely based on statistical models may not be appropriate, as part of the originality of this research 
will be based on the use of realistic traffic and locations. Additional information such as performance 
data could also be useful, though this may be a secondary concern as the first point of interest is the 
user distributions themselves. Data such as practical RSRP data could be useful for the verification 
of the accuracy of the distributions used (if these are not based on precise known locations). For 
example, it may be possible analyse the range of RSRP values present in the practical network and 
see if these match the results that are suggested in the simulations, although this may be complicated 
because of the varying configurations of the beams, which may not match between the practical and 
simulated environments. 

Milton Keynes simulation 

The data that are currently available (i.e. data that are simple to access within the research group at 
present) include the following: 

Location data for BSs and the surrounding environment are available (Figure 60). The database also 
includes coverage maps, which will represent the regions that will form part of the analysis of the 
beam selection simulations. 

 

Figure 60 - Milton Keynes BS coverage data. The shaded areas represent the coverage for each sector. 

A key type of data that could prove very useful and is readily available is the average number of 
connected user data. As this provides an average value for the number of mobile devices that are 
connected at any time, this effectively provides the number of users that need to be included in any 
simulation. 

In addition to these network data, there are some traffic data that has been provided by local councils 
consisting of origin and destination matrices. This could be useful in refining (and possibly simulating) 
the movement of traffic, although this project will likely focus firstly on beam configurations that do 
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not change too often, so this could be of limited use at first. It is possible that other public domain 
data could also be useful, as many councils provide these sorts of data in various formats. 

Minimisation of Drive Test (MDT) data are also available from the network and are advantageous in 
that they contain the exact global positioning system (GPS) coordinates for each user (Figure 61). 
They also contain altitude data, which could be useful if the proposed framework is extended into 
three dimensions. They also include both RSRP and reference signal received quality (RSRQ) data, 
which will be potentially useful for the verification of the simulation. 

A major disadvantage of MDT data is that not all UEs provide them, as users must give their 
permission for these data to be transmitted to the network. Additionally, not all mobile operating 
systems support the collection of these data. It is likely that the availability of these data will only 
reduce in the future. Also, no information about the features of the geographic environment are 
provided within the MDT data, that is there is no information about buildings or direct information 
about the terrain apart from what can be inferred from the GPS coordinates. 

 

Figure 61- Example location data from MDT (courtesy of Shipra Kapoor) 

4.7.14 Approaches to finding a solution  

The most obvious approach to solving the even coverage problem described in the previous section 
is to use an exhaustive search method. This is achieved by computing the RSRP values from the 
matrices representing the RSRP surfaces for each of the possible beam combinations from a defined 
set of beams. This approach, however, is potentially time-consuming. For example, finding eight 
beams from a set of only 15 require 6435 iterations of possible beam combinations. As shown in this 
section, this many iterations may not be necessary as sometimes there can be many sets of possible 
beams that yield very similar distributions. This can be seen in the following example. 

Here, 15 beams are selected to be investigated. These are not chosen to be related to a specific 
example, but rather to view the types of results that can be expected. The beams are chosen to 
sweep a sector of 120 degrees to the west of the BS. The first eight beams are separated so that the 
main beam sweeps at equal intervals between -60 and 60 degrees. The final seven are the first 
beams from the set that sweep at equal intervals between -50 and 50 degrees. The simulation is run 
according to the RSRP surface method described above, obtaining the normalised RSRP values for 
each of the users present. 

An exhaustive search method was used to provide a baseline for comparisons with other methods 
for finding optimal beam configurations and to analyse the features of the variations in user 
distributions over beams. The ‘distribution over beams’ is the difference described in the equation, 
which is the difference between the number of users that are served by the beam with the highest 
number of users and by the beam with the lowest number of users. 

The results of the exhaustive search are shown in Figure 62, with the horizontal access represented 
the combination of eight beams from the set of fifteen. The lower the value on the y-axis, the better 
the combination of beams in terms of even coverage. It can be seen immediately that the range of 
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user distribution over beams is very large, especially considering that the number of users in this 
example is limited to 100. It can also be observed that, while the user distributions never reach zero, 
which would represent the most idea scenario for even coverage, the lowest values of around 11 
and 12 are revisited several times, suggesting that computing the RSRP values for all combinations 
may not be necessary. 

 

Figure 62 - Variation of the distribution of users over the selected beams, as described in the text, for all possible 
combinations of a set of 15 beams. 

4.7.15 Experimental Results  

The problem of finding a minimum value from the beam selections is addressed in this section. The 
function is discrete, therefore making this a problem in integer linear programming. Unfortunately, 
this means that many of the standard optimisation algorithms are not appropriate for finding a 
solution, although simulated annealing (SA), a standard method in optimisation, offers a possibility, 
as it has often been used for optimisation problems involving discreet data [4.42]. It should be noted 
that it may not be necessary to find an actual minimum value, as an approximate minimum value 
may suffice for practical purposes. 

SA, first introduced by Kirkpatrick et al. [4.43] is similar to other stochastic search methods where a 
random point is selected, followed by another point which is rejected if it offers a worse solution or 
accepted if it offers a better solution, with the process continuing until a minimum is reached. SA 
extends the process by introducing the possibility that a solution will be accepted even if it is worse 
depending on a temperature coefficient that gradually reduces as the algorithm proceeds. 

A variety of parameters were used to determine how quickly a minimum value could be found for a 
beam distribution using such a method. Firstly, the total range to be considered for the beam 
combinations was limited to 1000, as it has already been determined that a low value has been 
reached several times within that range. The maximum step size is set to 100 to keep the step size 
within the range of the data. Table 8 shows the minimum value of the user distribution as obtained 
with various parameters. 

Maximum Number 
of Iterations 

Initial 
Temperature 

Determined Minimum 
Value of Distribution 

100 10 11 

50 10 11 

25 10 13 
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25 100 11 

10 100 11 

Table 8 -Minimum value of user distribution as obtained with various parameters 

The initial temperature has been seen often to affect the effectiveness of obtaining a reasonable 
value within the maximum number specified, although this depends on how random numbers appear 
in the sequence. Figure 63 shows an example of the process of finding the best beam pattern using 
the SA process described. The blue line represents the sequence of random values at which the 
distribution of users is measured. This uses the Python random number generator and begins by 
imitating these pseudorandom numbers, with the variation over time determined by the initial 
temperature of the algorithm. The other line in the diagram shows the accepted candidate solutions 
for the beam distribution, which, in this case, obtains the lowest possible distribution. 

 

Figure 63 - Representation of SA for 15 beams of equal width with temperature of 10. The blue line represents the 
candidate solutions, and the red line represents the accepted solutions. 

The previous example was for beams of equal beamwidth. The example in this section is for a set of 
beams containing beams of different widths. The purpose of such an example is to demonstrate how 
changing such parameters affects the approach to finding optimal beam configurations and how 
more complex problems can be addressed when designing mobile networks with beam selection. 

In the previous section, the beams were all generated based on an isotropic rectangular phased 
array with 64 elements, each of which were active in generating the beam. For this example, fourteen 
beams are chosen with the first eight generated according to the array in the previous example and 
the final eight generated with only 32 of the elements, forming a square around the central point of 
the 8x8 square of elements. These eight beams are wider than the original eight beams, however 
they all point the strongest section of the lobe in the same direction, that is equally spaced in one 
sector of a typical tri sectored BS. This time, there are 3003 possible beam combinations, and the 
distribution for the users is shown in Figure 64. 
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Figure 64 - Distribution of beams over users for 14 beams, eight of a narrower width and eight of a wider width. 

Once again, the SA process significantly reduces the number of iterations down to 30 with an initial 
temperature of 100 (Figure 65). 

 

Figure 65 - Representation of SA for 14 beams, with eight of one width and eight of another. 

The following provides a basic example of the performance of SA using a distribution where users 
are more clustered in certain directions. Take, for example, the heat map for a BS in Bromley, 
designed by Timothy Sanmoogen at BT as shown in Figure 66. 
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Figure 66 - Heat map for BS in Bromley (courtesy of Timothy Sanmoogen) 

There is a BS located just to the west of the darker red area of the map, which represents a greater 
contribution of users. Again, considering a tri-sectored BS, the density of users would vary with a 
sweep from -60 to 60 degrees (if 0 degrees represented a direction of due east). This can be 
approximated through a random selection of 100 users with a larger number chosen to occupy a 
certain section of the total sweep (Figure 67). 

 

Figure 67 - Approximation of user distribution observed in Bromley. The scaling of the concentric circles is indicative only. 

Significantly, the distribution of the users over the beams appears to have slightly different 
characteristics than the distributions for non-clustered random users (Figure 68). The lowest possible 
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value is visited only a few times in comparison with the many times that it was visited for the non-
clustered examples. It does, however, reach the next lowest value many more times, but this is quite 
far away from the lowest value. It may be that, without a sufficiently high temperature or number of 
iterations, this non-optimal value would be chosen. The specific circumstances would determine if 
this were a reasonable solution for the selection of beams or not. 

 

Figure 68 - Values for distribution of the users over the beams 

Indeed, nearly 200 iterations are required to obtain the correct solution when the initial temperature 
is set to 100, and nearly 100 iterations to obtain the next closest solution (Figure 69). 

 

Figure 69 - Obtained candidate solutions and selected solutions for SA algorithm 

However, setting an initial temperature to 200 allows for a correct solution to be obtained in only 
seven iterations. 

4.7.16 Network Deployment Recommendations 

From a network deployment and management perspective, the research presented in this section 
has a significant implication.  
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As described at the start of this section, the synchronisation process allows for a sweeping of beams 
over a coverage area to allow for the initial connection and synchronisation of user equipment. This 
process precedes the process of establishing data throughput. The specifics of the beam parameters 
are not defined in the standards and can, at least in theory, be established by the MNO. However, 
the number of beams that can be used and tested is limited in both a temporal and physical sense. 
Physically because of the limitations in hardware and potential difficulties in making changes to the 
parameters, especially if the site is already in operation. Temporally because, if a large number of 
candidate beams are used that vary between sweeps, then it will be a length process to obtain signal 
reports from each user related to each of the candidate beams. It is highly likely, especially in dense 
urban environments, that the characteristics of the coverage area in terms of the location of user 
equipment, will have changed several times by the time that results are obtained, by which time such 
results will not be relevant to the coverage environment. 

The advantages that this research brings can be considered in both a real-time and non-real-time 
sense. The non-real-time sense related to planning and design. As previously discussed, running 
propagation models is time consuming and the number of beams that an operator may consider 
could easily be several thousand or more. The examples in this section have used simplifications of 
propagation models using the RSRP surfaces described combined with standard Rayleigh 
propagation models. This was done due to limited computational resources and because the aim of 
this study is to investigate potential benefits in the design and management of the beam management 
process with synchronisation, rather than to investigate the propagation characteristics of specific 
environments. However, when designing Radio Access Networks in a way that does require the use 
of more complex propagation models, these would need to be run only a few times in comparison to 
the many times that would be needed if run for each possible beam configuration. This is because it 
has been shown that, from the perspective of coverage, an optimal (or near optimal) set of beams is 
likely to have been found after only a small number of iterations through the set of candidate beams, 
relative to the thousands of iterations necessary for an exhaustive search of all the possible 
candidates. 

The application of the process of beam selection discussed in this section could potentially be applied 
with self-learning networks in real time, however this would require further research. This is mainly 
because of the complexities in applying such concepts to specific network architectures, a process 
that would require careful investigation, and because of the much higher risks associated with 
applying optimisation in real time, since a sequence of bad solutions could potentially be very 
detrimental to network performance, leading to a degradation in user experience that could then lead 
to financial risks, especially if user experience is consistently worsened, or safety risks if a minimum 
level of service is not maintained. However, a careful application of beam optimisation methods in 
real-time could potentially yield great benefits for performance if one considered a scenario such as 
the following: 

Suppose that a mobile BS has access to a large set of potential beams but is using a standard subset 
of evenly spaced beams of equal width. These eight beams are used for sending the synchronisation 
blocks to the users wishing to connect to the network. It may be possible to add a threshold condition 
to the computation architecture responsible for synchronisation, that states, for example, that the 
user distribution is acceptable below a certain value. In other words, once the beams are such that 
they are each serving a number of users for which that number of users does not vary between 
beams by more than a specified amount, then this is acceptable. If, on the first sweep of the beams, 
this number is not an achieved, then the computational hardware could choose a different set of 
beams based on the methods described in this section. Since such a method has been shown in 
theory to yield a near optimal solution in a relatively small number of iterations, it should be possible 
for the BS to obtain its threshold value within a small number of sweeps, which may be fast enough 
to be useful before a significant change to the user environment. Likewise, when the environment 
does change, it may be possible to adapt to this environment more quickly than if an exhaustive 
search of the beams was necessary, especially if the network operator already obtains knowledge 
of likely changes, such as changes that usually occur during the evening rush hour. It may then have 
already determined a set of possible optimal beam from the previous day, or a sequence of previous 
days, that can then form the initial set of beams, thus making any optimisation even faster. 

4.7.17 Implementations 

It is possible to infer a method for applying the insights obtained from the investigations described, 
although the specifics of how this would be implemented would form part of further research. The 
proposed technique is intended to optimise coverage within telecommunications networks during the 
synchronisation phase of transmission at the base station, allowing for resources to be allocated 
more effectively depending on the distribution of users around the base station and the environment 
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in which the system operates. The method described in this document makes use of a series of 
stages that are run alongside the synchronisation process, which is defined within the existing 
telecommunications standards and therefore not part of this section. Some of these additional 
stages, the detail of which form the basis for this recommendation, are dependent upon the output 
of the standard synchronisation process. This section includes both the structure of the additional 
stages, how they operate and how they are connected in the application of coverage optimisation. 

The use of the proposed approaches to coverage optimisation during synchronisations allows for the 
following advantages over existing methods: 

1. Ensuring that, within any given service area, the number of users who are able to 
successfully connect to the network is at the maximum possible value given the available 
resources. The actual maximum number will be dependent upon the physical configuration 
of the base station and the allowed adaptability of the beamforming permitted by the base 
station’s hardware and software. 

2. Adapting the synchronisation coverage dynamically based on the current distribution of 
users within a service area. 

3. Adapting the synchronisation coverage based on distributions of users that are predicted to 
occur based on historical data and/or statistical models. 

4. Obtaining the optimal beam configuration for synchronisation coverage from a selection of 
candidate beams in a shorter time than would be required if each beam configuration would 
need to be tested separately. 

The elements of the proposed method are shown in Figure 70. These elements can be connected in 
three configurations that are described later. The elements are shown within the boxes in the 
diagram, and the lines between them show the other elements to which each element is connected 
when in the configuration for option 1. In this description, an element refers to a step within the beam 
selection process. The first column of elements on the left-hand side, except for the ‘Active Beam 
List’ element, represent the standard steps required for synchronisation and therefore do not form 
part of this description. The functioning of the other elements, aside from those forming part of the 
standard synchronisation process, are described in this section. These descriptions are followed by 
explanations of how the elements are configured in the three separate configuration options. It should 
be noted that the functioning of some of the elements are associated with explanations of how they 
should function, whereas others are not precisely defined and could be implemented in several 
different ways that are not defined as part of the information here. Within the explanations, ‘controller’ 
is used as a generic term to define the computation entity that is responsible for managing the beam 
selection process described here. 

 

Figure 70 - Proposed implementation elements configured for option 1. 

Active Beam List 

This element contains the information about the beams to which the synchronisation blocks are 
currently mapped as part of the synchronisation process. The information provides sufficient detail 
for the base station to determine beam azimuth angle, elevation angle and width. The step 
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represented involves obtaining the current beam information and providing it to the next element, 
which maps the beam to the synchronisation block. 

Update User Locations 

This controller updates the user locations if new user location data is available. The user location 
data is stored as a class of x-y coordinates within a grid that has the same dimensions as the x-y 
plane of the RSRP curve, which is described later. It is necessary, as part of this step, to verify the 
formatting of the user location data and to update this formatting if necessary. 

Check if new user location data is available 

The controller checks the user location data source to determine if new user location data is available. 
If it is, it proceeds to the update user locations step. 

User Location Data Source 

User location data is provided by an external source. The user locations are not estimated by the 
hardware as part of the synchronisation process,  

Propagation Grid Determination 

The determining of the propagation grid can occur while the algorithm is running, or before the 
algorithm is used through the creation of a library where the grid can be obtained when necessary. 
Each candidate beam is associated with a propagation grid that is used to estimate the RSRP value 
from the perspective of each UE. The grid is obtained from an ‘RSRP curve,’ and has the dimension 
that correspond with the coordinate system that is used to describe the user locations. The RSRP 
curve is obtained by the following process: 

The users are placed evenly around a base station. Only a third of the total area is occupied with 
users to simulate a typical tri-sector base station configuration. The range for these examples is set 
out to a pre-determined distance to reflect the extent of the cell area. Additionally, an area near to 
the base station is excluded to avoid near-field effects and complications with overlapping beams. A 
model for 5G is then run for each of the beams. On each occasion each user reports back its 
measured RSRP value for the beam. The model that is used is not defined and may range from a 
simple inverse square model to a more elaborate and detailed electromagnetic simulator. These 
reported RSRP values at specific points, correspond to points within a two-dimensional RSRP 
surface. This surface is then extended to cover the entire area of interest from the point of view of 
the propagation environment. 

The generation of the normalised RSRP surfaces allows for the problem to be expressed more 
precisely as a combinatorial optimisation problem. This formulation is developed with attention 
specifically to the assumption that it is preferable to provide even coverage of broadcast 
synchronisation beams for a given user distribution and environment. 

Check if algorithm has obtained optimal value 

The notion of the optimal set of beams is defined in a specific way. This corresponds with the 
explanation provided earlier. 

Obtain Next Set of Candidate Beams 

The next set of candidate beams are obtained through a simulated annealing process. The process 
itself is well established, having been developed around 1970, but the specific way that it is applied 
to the relevant matrices and vectors is novel, to the best of the author’s knowledge. The explanation 
assumes that a random set of candidate beams are chosen and tested according to the methods 
described in the relevant sections. This initial set creates a beam distribution, showing the differences 
between the number of users served by the beam that serves the largest number of users minus the 
number of users served by the beam that serves the least number of users. In addition to the initial 
set of beams, a maximum number of algorithm iterations is also set, and may be altered depending 
on the situation in which the algorithm is intended to be run. A maximum step size is also set, which 
is used to set an upper limit on how far away from the next estimation can be. In this context, this 
means that all of the possible combination of available beams are indexed, and so the next tested 
combination of beams can only be within the range defined by the positive and negative expression 
of the maximum step size, starting at the index value of the current set of beams. 

An initial temperature is also set, the value of which has been pre-determined through 
experimentation. The temperature is used to determine whether a result is accepted or not. In other 
words, it determines whether or not the beam distribution obtained from the current iteration of the 
algorithm is accepted. If is accepted, then this beam configuration is recorded (and possibly 
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implemented depending on the specific implementation. The possible implementation configurations 
are described later in this document.) If there is a previously selected beam configuration, then this 
previous value is discarded and replaced by this new beam configuration. The entire process 
continues until either the maximum number of iterations has been reached, or the beam distribution 
has reached a pre-set threshold value.  

Pre-Determined Candidate Beams 

This is the set of both the parameters of the beams that could be selected, including their widths, 
azimuths and elevations, and the combinations in which these beams could appear.  

Obtain Propagation Grid 

This is the RSRP surface described earlier. 

Replace Current Active Beam List 

This function changes the set of beams that are applied to the synchronisation signal blocks. 
Depending on the way that the functions are applied, this could happen often throughout the 
iterations of the beam selection algorithm, or only once a final set of beams has been chosen. 

Default Beam List 

This is the list of beams that are used by default before any optimisation has been applied. This list 
is stored permanently and is also applied in the event of a system reset. 

Combination of location and propagation lookup 

The x-y coordinates for each set of users are mapped onto the propagation grid, thus providing the 
RSRP value for each user for the beam. This is done for each of the beams under consideration. 

Determine Next Beam Set 

If the process has not reached the optimal value according to the set criteria, the next beam set is 
selected randomly within the confines specified by the maximum step size. 

Determine Beam Distribution 

Once the combination of each of the locations with each propagation lookup table for the beams 
under considering has been performed, the number of users served by each beam is calculated. This 
is done by considering the maximum RSRP value obtained for each user, and which beam that 
corresponds to. It is then possible to calculate the number of users served by a beam by finding how 
many users are provided with a maximum RSRP value by that beam. The number of users in the 
beam that serves the minimum number of users is subtracted from the number of users in the beam 
that serves the maximum number of users to obtain the beam distribution. 

Update Active Beam List 

Once a new beam set has been determined, the active beam list is updated before being passed to 
the synchronisation functions. This may occur regularly, or only once the method has determined the 
optimum set of beams, depending on the configuration option used. 

Configuration Options 

There are (at least) three possible ways of configuring the functional blocks described in this 
document. The one that is chosen will depend on how frequently the active beam list, i.e. the set of 
beams that is actually used to provide coverage to users, is updated. It will also depend on the source 
of the data that is used to inform the choice of beams, and whether these data are entirely based on 
predictions, or whether real-time feedback from the UEs is used to inform the choice of beams. The 
rate at which the active beams will be updated will also depend on whether it is deemed necessary 
to update this list as the simulated annealing algorithm obtains new improved results, or whether the 
system should wait until the algorithm has completed all iterations before updating the list. 

Option 1: Perform all optimisation before updating active beam list. 

Option 2: Perform optimisation using predicted data, updating as improved results become available. 

Option 3: Perform optimisation based on obtained results from UE feedback, with assumed user 
locations. 

4.7.18 Future Work  

There are three main categories of future work related to this discussion:  
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Firstly, the implementation of more supervised learning techniques on both the obtained data from 
the simulation and the refined user data. The aim of applying supervised learning to the simulation 
data is to investigate the suitability of different algorithms for categorisation for this type of problem. 
The application of learning to the user data is an attempt to simplify the process of obtaining the 
simulation data by identifying clusters instead of having to simulate each point individually.  

Secondly, it will be necessary to investigate further the simulation process itself, as the current 
method may not be accurate enough to have confidence in the results. At first, it may be possible to 
modify the approach described using different types of propagation models for different environments 
(as the current method is based on a standard Rayleigh model). However, it will be necessary to 
decide upon the level of complexity required within the channel model for this use case.  

Finally, it will be necessary to consider possible implementations of AI for beam selection within 
networks. At this stage, this is a more speculative part of the research.  

4.8 Radio Coverage Prediction 

In this section, we present research work associated with radio coverage prediction using Machine 
Learning. First, real network coverage data is extracted using the minimisation of drive test (MDT) 
technique for a timescale of two months – January and August. The data from two different seasons 
led us to understand the impact of season on radio coverage. Following this, a machine learning 
model using the deep neural network technique is developed. This model assists in predicting radio 
signal strength in areas with limited and/or no network coverage data. Finally, prediction results from 
the trained model were compared against 3GPP standardised WINNER II propagation model whilst 
classical machine learning techniques such as linear regression and simple neural network were 
utilised to measure the accuracy of the trained model. 

4.8.1 Introduction 

Measuring customer experience on mobile data is of utmost importance for global mobile operators 
as it provides the ability to optimise network performance based on user needs and demand. One of 
the key performance indicators for mobile network coverage analysis and management is signal 
strength – reference signal received power (RSRP). Radio data can be gathered through a range of 
different methods such as geolocation, drive test, open-source, crowd data etc. To measure RSRP 
values, drive tests are usually performed by network operators for network data collection. This 
requires significant human efforts, explicit hardware, and substantial capital expenditure (CAPEX). 
Estimating and predicting RSRP values has been a key component in the Quality of Service (QoS) 
analysis. There are two approaches identified for predicting RSRP. 
  

a) The first is using the 3GPP standardised propagation model. Here field measurements are 
taken from different terrain and scenarios, such as urban, rural, suburban, macro, or 
microcells - it summarizes the propagation rules based on several test values. Typical 
empirical-based path loss models as documented in 3GPP TR 38.901. Such modelling 
depicts the channel properties in a general and coarse way, which may not be accurate 
enough for specific environments. Although modelling the RAN and UE behaviour that relies 
on the above models is achievable, such modelling depicts the channel properties in a 
general and coarse way, which may not be accurate enough for reflecting a specific 
environment. 

b) A second method is a data-driven, machine learning approach. Environmental and radio 
features in a defined polygon or area are first extracted using a defined method. In the 
presented work, the minimization of drive test (MDT), a 3GPP standard technique, is used 
to gather network measurements. Here, an individual’s mobile device, also referred to as 
user equipment (UE), that is logged in the network collects measurement data and feedback 
it to the base station (BS). Figure 71 demonstrates one month of radio data collected using 
the MDT technique from one of the cell sites. This cell site has three sectors namely sector 
A, B and C. The data plotted on the figure is processed data that is all the outliers has been 
removed using Inter quartile range (IQR) technique. Each point represents a UE associated 
with one of the sectors of the cell. UE location i.e., latitude, longitude and signal strength are 
recorded. The area has been divided into (10*10) metre discrete bins to reduce the effects 
of minor observation errors. 
 

Data collected using MDT technique has its own challenges such as (a) the signal strength 
between UE devices at the same location and time could differ more than +-6dB (b) Inaccurate 
locations information and signal strength for indoor UEs (c) Some locations only contain limited 
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data points due to imbalanced UE distribution. However, with the emergence of ML deep neural 
networks (NN), fine-grained propagation channel modelling for radio networks is possible. In 
Figure 75, we present the proposed data-driven, two-tier neural network (NN) model for RSRP 
prediction. Here, the regression relationship between a target location and RSRP is evaluated 
quantitatively based on the large historical RSRP data set that was obtained using the MDT 
technique.  

 

Figure 71 - Radio coverage data collected using MDT technique from one of the cell sites for the month of January. 

4.8.2 Radio Coverage Prediction using Mathematical Model  

Update 3GPP standardised 3D-Urban Macro (UMa) LOS propagation model was utilised as a 
baseline technique to determine the signal strength per bin. Here, the BS and UE locations were 
used as an input. Next, distance between the BS and each UE is calculated. Thereafter, break point 
distance calculation was performed to distinguish between the path loss equation to be implemented 
as the employed propagation model is dual slope. The path loss modelling is performed using the 
equation (46): 

𝑃𝐿 =  {
22𝑙𝑜𝑔10(𝑑3𝐷)  +  10𝑙𝑜𝑔10(𝑓𝑐) 

40𝑙𝑜𝑔10(𝑑3𝐷)  +  28.0 +  20𝑙𝑜𝑔10(𝑓𝑐)  −  9𝑙𝑜𝑔10((𝑑𝐵𝑃
′ )2  +  (ℎ𝐵𝑆  −  ℎ𝑈𝑇)

2) 

10𝑚 <  𝑑2𝐷  <  𝑑𝐵𝑃
′

𝑑𝐵𝑃
′  <   𝑑2𝐷  <  5000𝑚 

 

 

(46) 

Where, ℎ𝐵𝑆 is the height of base station that is assumed to 17.5m and ℎ𝑈𝑇 is the height of user 

equipment assumed to be 1.5m and ℎ𝐸  is the effective ground height equals 1m. The cell power is 

assumed to be 23 dBm and antenna gain is 16.5. 𝑑3𝐷 is the 3-D distance between BS and UE, 𝑓𝑐 is 
the carrier frequency with value of 1800 MHz, 𝑑𝐵𝑃

′  is the break point distance calculated as 4*(ℎ𝐵𝑆  −
 ℎ𝑈𝑇)∗( (ℎ𝑈𝑇  −  ℎ𝐸) 𝑓𝑐/𝑐  
 
The signal strength is calculated using the equation (47): 
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Signal strength(dB) = cell power + antenna gain – pathloss 

 
(47) 

Next, linear regression method was utilised as a baseline machine learning technique to predict the 
signal strength using the historic RSRP data extracted using MDT technique. Due to the uncertainty 
of the transmission channel, outliers are removed using Inter quartile technique. The processed date 
in particular UE location (latitude, longitude), distance from the base station and corresponding signal 
strength is fed into the regression model. The output is the predicted signal strength with respect to 
distance. Figure 72, Figure 73 and Figure 74 demonstrates the signal strength prediction using the 
standardised UMa path loss model, break point distance and predicted signal strength with respect 
to distance using linear regression technique for each sector. 

 

Figure 72 - Graph presents the real network data extracted using MDT technique, signal strength with respect to distance 
using 3GPP standardised UMa PL model and Linear regression technique for Sector A 
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Figure 73 - Graph presents the real network data extracted using MDT technique, signal strength with respect to distance 
using 3GPP standardised UMa PL model and Linear regression technique for Sector B 

 

Figure 74 - Graph presents the real network data extracted using MDT technique, signal strength with respect to distance 
using 3GPP standardised UMa PL model and Linear regression technique for Sector C 
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4.8.3 Radio Coverage Prediction using Machine Learning 

It is known that the key factors affecting signal transmission exist in the characteristics of the 
environment, such as how far the signal transmits, and how many reflections, absorption, and 
scatterings it encountered during this period, even the building materials and vegetation. But these 
characteristics are difficult to model accurately. Although ray-tracing methods are aiming to restore 
the transmission path as much as possible, urban-scale raytracing is too time-consuming and 
complicated to be realistic. Moreover, simpler images would improve not only the training of the 
model and the hyperparameter search but also the final performance of the methodology. Therefore, 
in this research work, we do not seek accurate tracing results. We focus on how to describe the 
possible impact of the signal transmission path with UE location and environmental information. 
Figure 75 presents the proposed two-tier NN model with emphasis on NN architecture, training data 
generation and training scheme. 

 

Figure 75 - Proposed two-tier neural network architecture 

It is a generative model that exploits MDT data on a digital twin (DT) framework to predict signal 
strength. The first tier is designed as a CNN-based VAE to extract relevant environmental features 
while the second-tier network is designed as a fully connected network with two heads that outputs 
the mean and variance of RSRP in each location. The underlying representation of VAE is ᵶ - this 
parameter will assist the training of the two-tier neural network. Here, not only is the historical real 
data of RSRP utilised but also geographical statistics information is considered. The correlation 
between locations and RSRP distributions is then mapped through data compression. Regarding the 
extraction of environmental features, we propose that according to the particularity of the 
environment served by each BS, it is necessary to construct images that can reflect the transmission 
environment from BS to UEs, thereafter, extract critical information from the images as auxiliary 
training features of the RSRP prediction model.  

Figure 76 presents one of the BS-UE association images generated using the DRIVE simulator. The 
red polygons represent typical buildings, and green polygons represent the foliage. BS is represented 
by a black circle, and UE is marked by a blue triangle. The right side of the figure shows zoomed 
areas of BS and UE. The connection between the BS and the UE is highlighted by a light blue line. 
10000 such top-view geographical images with resolution (256*256*3) are collected to train the VAE. 
The BS-UE association modelling is accomplished by a modified digital twin (DT), while the process 
of image dimension reduction to feature extraction is completed by a convolutional neural network 
(CNN)-based variational autoencoder (VAE). Once the model is trained, the encoder section of VAE 
serves as an environment feature extractor. This parameter is then fed as an input feature along with 
other environmental and network data to the second tier of the NN model to assist in the training of 
the RSRP prediction. 
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Figure 76 - BS-UE association images generated from DRIVE simulator 

The second tier is designed as a likelihood model. The first two layers are with 100 neurons and 50 
neurons respectively, and the last layer has two heads with 50 neurons each which output the mean 
and variance of each bin. Here, the environmental features and real MDT data features are adopted, 
formulating an integrated training process. Since the number of training features is small, a multi-
layer perception (MLP) trained in supervised learning can satisfy the task requirements. Due to 
changes in the transmission environment, the RSRP value recorded at each location is time varying. 
From a statistical point of view, the RSRP values recorded at this location conform to a normal 
distribution. Therefore, the MLP model is designed as a likelihood model with mean and variance 
outputs, which takes the output of the encoder and BS-recorded features as training inputs. 

The real-world dataset is provided by BT Labs, which records the monthly data of about 16,000 bins 
served by one BS. Each bin covers a square of 10m*10m.  The accuracy of trained model has been 
monitored using different statistical measure thresholds. We evaluate the models in terms of the 
average RSRP prediction error through a 20-fold cross-validation scheme, and early stopping is 
adopted in the training process with a stop patience of 8. The VAE was trained in an offline way. 
Experiments are performed using the Intel 2 E5-2640v4 CPU, 2 RTX 2080Ti GPU and 4 × 32G DDR4 
SDRAM. The data pre-processing is performed by the CPU whilst the training stage relies on the 
GPU. The training is based on PyTorch. The training and validation set are divided according to the 
80% and 20% of the total both for VAE and likelihood model. The batch size of VAE is 50 and for 
likelihood model is 3000. Both models use Adam to be an optimiser with the default learning rate. 
Figure 77 demonstrates more detailed boxplot results, which summarize the distribution 
characteristics of the MAE on the test set in 20-fold cross-validation for both MLP and the proposed 
model. In general, our proposed model trains more stable (with fewer outliers) and has a smaller and 
more concentrated error distribution as shown in Figure 77. 
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Figure 77 - The boxplot of cross-validated MAE for RSRP prediction based on different sectors and months 

Table 9 presents MAE results of the empirical model, MLP model and proposed two-tier NN. 
Compared with the empirical model our proposed model can improve the prediction accuracy by 
about 2%, and the largest increase accrues on the subset January sector C, where the MAE is 
reduced from 10.71 dBm to 6.758dBm, about 38%. Meanwhile, compare with the simple MLP model, 
the prediction accuracy of our proposed model has an improvement by nearly 10%, and the largest 
improvement lies in the August sector A, around 16.4%. 

Data information  Validation results (in dBm)  

Month  Sector  No. of samples  Empirical  MLP  Proposed model  

Jan.  A  21236  7.29  6.478  5.840  

B  53208  7.99  7.323  6.243  

C  15172  10.71  6.758  6.636  

Aug.  A  10699  8.06  7.104  5.941  

B  24361  10.08  9.726  8.623  

C  20228  8.78  7.790  7.012  
Table 9 - Data information and model validation results for different data subset 

4.8.4 Conclusion 

A novel two-tier NN architecture is proposed to realise the accurate RSRP prediction. The VAE-
based environmental feature extractor constitutes the first-tier network which is used to distil the 
critical information from BS-UE association top-view geographical images, where the image 
generation is finished in a modified DT (DRIVE) by using OSM of the given area. Meanwhile, the 
second tier is designed as a likelihood model which takes the outputs of the above extractor and real 
data features for training. The numerical results evaluated on real-world datasets show the gains of 
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the proposed model in terms of prediction accuracy. The overall accuracy improvement is more than 
20% and around 10% compared with the empirical and a simple MLP model respectively, and it can 
reach 38% and 16.4% improvement in the best validation case. 

  



page 120 (123) AIMM Project, WP5, D5.2 

 © AIMM Consortium 

4.9 Section 4 – References 

[4.1] Levine, Sergey, Aviral Kumar, George Tucker, and Justin Fu, "Offline reinforcement learning: 
Tutorial, review, and perspectives on open problems.", https://doi.org/10.48550/arXiv.2005.01643 

[4.2] S. Sutton, A. G. Barto, and F. Bach, “Reinforcement learning: An introduction”, MIT Press, 
1998 

[4.3] M. Bennis and D. Niyato, “A q-learning based approach to interference avoidance in self-

organized femtocell networks,” in 2010 IEEE Globecom Workshops, 2010, pp. 706–710. 

[4.4] M. Dryjanski, L. Kulacz, and A. Kliks, “Toward modular and flexible open ran implementations 

in 6g networks: Traffic steering use case and o-ran xapps,” Sensors, vol. 21, no. 24, 2021. 

[4.5] S. Yue, J. Ren, J. Xin, D. Zhang, Y. Zhang, and W. Zhuang, “Efficient federated meta-learning 

over multi-access wireless networks,” IEEE Journal on Selected Areas in Communications, 

vol. 40, no. 5, pp. 1556–1570, 2022. 

[4.6] B. Liu, L. Wang, and M. Liu, “Lifelong federated reinforcement learning: A learning architecture 

for navigation in cloud robotic systems,” IEEE Robotics and Automation Letters, vol. 4, no. 4, 

pp. 4555–4562, 2019. 

[4.7] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning algorithms,” arXiv preprint 

arXiv:1803.02999, 2018. 

[4.8] J. Koneˇcný, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and D. Bacon, “Federated 

learning: Strategies for improving communication efficiency,” in NIPS Workshop on Private 

Multi-Party Machine Learning,2016. 

[4.9] S. Lin, G. Yang, and J. Zhang, “A collaborative learning framework via federated meta-

learning,” in 2020 IEEE 40th International Conference on Distributed Computing Systems 

(ICDCS), 2020, pp. 289–299. 

[4.10] L. Zhang, C. Zhang, and B. Shihada, “Efficient wireless traffic prediction at the edge: A 

federated meta-learning approach,” IEEE Communications Letters, pp. 1–1, 2022. 

[4.11] A. Dogra, R. K. Jha, and S. Jain, “A survey on beyond 5g network with the advent of 6g: 

Architecture and emerging technologies,” IEEE Access, vol. 9, pp. 67 512–67 547, 2021. 

[4.12] C. Adamczyk and A. Kliks, “Reinforcement learning algorithm for traffic steering in 

heterogeneous network,” in 2021 17th International Conference on Wireless and Mobile 

Computing, Networking and Communications (WiMob), 2021, pp. 86–89. 

[4.13] M. Pióro and D. Medhi, Routing, Flow, and Capacity Design in Communication and Computer 

Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2004. 

[4.14] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Understanding o-ran: 

Architecture, interfaces, algorithms, security, and research challenges,” 2022. 

[4.15] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep 

networks,” 2017. 

[4.16] S. Itahara, T. Nishio, Y. Koda, M. Morikura, and K. Yamamoto, “Distillation-based semi-

supervised federated learning for communication-efficient collaborative training with non-iid 

private data,” IEEE Transactions on Mobile Computing, pp. 1–1, 2021. 

[4.17] M. Bennis and D. Niyato, “A Q-learning-based Approach to Interference Avoidance in Self-

organized Femtocell Networks,” in 2010 IEEE Globecom Workshops. IEEE, 2010, pp. 706–

710. 

[4.18] F. B. Mismar and B. L. Evans, “Q-learning Algorithm for VoLTE Closed Loop Power Control in 

Indoor Small Cells,” in 2018 52nd Asilomar Conference on Signals, Systems, and Computers. 

IEEE, 2018, pp. 1485–1489. 

https://doi.org/10.48550/arXiv.2005.01643


AIMM Project, WP5, D5.2 page 121 (123) 

© AIMM Consortium  

[4.19] F. B. Mismar, B. L. Evans, and A. Alkhateeb, “Deep Reinforcement Learning for 5G Networks: 

Joint Beamforming, Power Control, and Interference Coordination,” IEEE Transactions on 

Communications, vol. 68, no. 3, pp. 1581–1592, 2019. 

[4.20] R. Amiri, M. A. Almasi, J. G. Andrews, and H. Mehrpouyan, “Reinforcement Learning for Self 

Organization and Power Control of Two-tier Heterogeneous Networks,” IEEE Transactions on 

Wireless Communications, vol. 18, no. 8, pp. 3933–3947, 2019. 

[4.21] Y. Wang, G. Feng, Y. Sun, S. Qin, and Y.-C. Liang, “Decentralized learning based indoor 

interference mitigation for 5g-and-beyond systems,” IEEE Transactions on Vehicular 

Technology, vol. 69, no. 10, pp. 12 124–12 135, 2020. 

[4.22] F. H. C. Neto, D. C. Araújo, M. P. Mota, T. F. Maciel, and A. L. de Almeida, “Uplink power 

control framework based on reinforcement learning for 5g networks,” IEEE Transactions on 

Vehicular Technology, vol. 70, no. 6, pp. 5734–5748, 2021. 

[4.23] Y. Cao, S.-Y. Lien, Y.-C. Liang, and K.-C. Chen, “Federated deep reinforcement learning for 

user access control in open radio Access networks,” in ICC 2021-IEEE International 

Conference on Communications. IEEE, 2021, pp. 1–6. 

[4.24] P. Li, J. Thomas, X. Wang, A. Khalil, A. Ahmad, R. Inacio, S. Kapoor, A. Parekh, A. Doufexi, 

A. Shojaeifard et al., “RLOps: Development Life-cycle of Reinforcement Learning Aided Open 

RAN,” arXiv preprint arXiv:2111.06978, 2021. 

[4.25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.Bellemare, A. Graves, M. 

Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level Control Through Deep Reinforcement 

Learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015. 

[4.26] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. 

Charles, G. Cormode, R. Cummings et al., “Advances and Open Problems in Federated Learning,” 

Foundations and Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021. 

[4.27] M. Eskandari, S. Kapoor, K. Briggs, A. Shojaeifard, H. Zhu, and A. Mourad, “Smart 

Interference Management xApp using Deep Reinforcement Learning,” arXiv preprint 

arXiv:2204.09707, 2022. 

[4.28] K. Briggs, “72.29 the billiard equations,” The Mathematical Gazette, vol. 72, no. 461, p. 217–

218, 1988 

[4.29] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-

efficient Learning of Deep Networks from Decentralized Data,” in Artificial intelligence and statistics. 

PMLR, 2017, pp. 1273–1282. 

[4.30] P. Li, J. Thomas, X. Wang, H. Erdol, A. Ahmad, R. Inacio, S. Kapoor, A. Parekh, A. Doufexi, 

A. Shojaeifard et al., “Sim2real for Reinforcement Learning Driven Next Generation Networks,” arXiv 

preprint arXiv:2206.03846, 2022. 

[4.31] Pollini, G. P., "Trends in handover design", IEEE Commun. Mag, p. 82-90, vol. 34, Mar 1996 

[4.32] McDonald, B. Pazand and C., "A critique of mobility models for wireless network simulation", 

6th IEEE/ACIS International Conference on Computer and Information Science, pp. 141--146, 2007 

[4.33] Helmy, F. Bai and A., "A survey of mobility models", Chapter1-5-30-04, 2004, 

http://nile.usc.edu/~helmy/important/Modified-Chapter1-5-30-04.pdf 

[4.34] R. Chataut and R. Akl, “Massive MIMO Systems for 5G and beyond Networks—Overview, 
Recent Trends, Challenges, and Future Research Direction,” Sensors, vol. 20, no. 10, p. 2753, May 
2020, doi: 10.3390/s20102753. 

[4.35] M. Dryjański, Ł. Kułacz, and A. Kliks, “Toward Modular and Flexible Open RAN 
Implementations in 6G Networks: Traffic Steering Use Case and O-RAN xApps,” Sensors, vol. 21, 
no. 24, p. 8173, Dec. 2021, doi: 10.3390/s21248173. 

http://nile.usc.edu/~helmy/important/Modified-Chapter1-5-30-04.pdf


page 122 (123) AIMM Project, WP5, D5.2 

 © AIMM Consortium 

[4.36] J. Wang, H. Zhu, L. Dai, N. J. Gomes and J. Wang, "Low-Complexity Beam Allocation for 

Switched-Beam Based Multiuser Massive MIMO Systems," in IEEE Transactions on Wireless 

Communications, vol. 15, no. 12, pp. 8236-8248, Dec. 2016, doi: 10.1109/TWC.2016.2613517. 

[4.37] J. Butler and R. Lowe, “Beam-forming Matrix Simplifies Design of Electrically Scanned 
Antennas,” Electronic Design, April 1961. 

[4.38] R. Shafin, H. Chen, Y. H. Nam, S. Hur, J. Park, J. Zhang, J. Reed, and L. Liu.  "Self-Tuning 
Sectorization: Deep Reinforcement Learning Meets Broadcast Beam Optimization," IEEE 
Transactions on Wireless Communications, vol. 19, no. 6, pp. 4038-4053, 2020, doi: 
10.1109/TWC.2020.2979446. 

[4.39] S. Chen, S. Sun, G. Xu, X. Su and Y. Cai, "Beam-Space Multiplexing: Practice, Theory, and 

Trends, From 4G TD-LTE, 5G, to 6G and Beyond," in IEEE Wireless Communications, vol. 27, no. 

2, pp. 162-172, April 2020. 

[4.40] A. Omri, M. Shaqfeh, A. Ali and H. Alnuweiri, "Synchronization Procedure in 5G NR 

Systems," in IEEE Access, vol. 7, pp. 41286-41295, 2019, doi: 10.1109/ACCESS.2019.2907970. 

[4.41] J. Wang, H. Zhu, L. Dai, N. J. Gomes and J. Wang, "Low-Complexity Beam Allocation for 

Switched-Beam Based Multiuser Massive MIMO Systems," in IEEE Transactions on Wireless 

Communications, vol. 15, no. 12, pp. 8236-8248, Dec. 2016, doi: 10.1109/TWC.2016.2613517. 

[4.42] S. P. Brooks and B. J. T. Morgan, "Optimization Using Simulated Annealing," Journal of the 

Royal Statistical Society: Series D (The Statistician), vol. 44, no. 2, pp. 241-257, 1995, doi: 

https://doi.org/10.2307/2348448. 

[4.43] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated Annealing," 

Science, vol. 220, no. 4598, pp. 671-680, 1983, doi: doi:10.1126/science.220.4598.671. 

  



AIMM Project, WP5, D5.2 page 123 (123) 

© AIMM Consortium  

 
 

 

 

 

 

 

 

                 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiH5pn3xoviAhWp0eAKHQLsAlUQjRx6BAgBEAU&url=https://www.nokia.com/about-us/news/media-library/nokia-logo/&psig=AOvVaw2I-26QpZjnCoL6qmV3csvd&ust=1557391860718004
https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiu8PTiyoviAhX_A2MBHRLdAo4QjRx6BAgBEAU&url=https://www.jobs.ac.uk/job/BPJ264/dean-of-loughborough-university-london&psig=AOvVaw0d5PfTuxj9JY0DtdhUHUWU&ust=1557392853360552
http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjLzKu8yIviAhVHD2MBHZZ5DQEQjRx6BAgBEAU&url=http://decipher.uk.net/about-decipher/people/bristol-university-logo/&psig=AOvVaw0D-YNeHD3wBa8Ctc1rbp-T&ust=1557392274145340
https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj40o_cyYviAhXM8eAKHYnNCw4QjRx6BAgBEAU&url=https://www.linkedin.com/school/universit%C3%A4t-stuttgart/&psig=AOvVaw0jckdj0D1dp3IBS7t0VgKa&ust=1557392132630991
http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiS-qnEwfriAhUSWBoKHUVjCDQQjRx6BAgBEAU&url=http://www.clark.ie/&psig=AOvVaw2FvVGgV-tSDixb-Ugd1wqS&ust=1561204341943142

